skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Shock Heating of Incident Thermal and Superthermal Populations of Different Ion Species
Abstract Using ion tracing in a model shock front we study heating of thermal (Maxwellian) and superthermal (Vasyliunas–Siscoe) populations of protons, singly charged helium, and alpha particles. It is found that heating of thermal and superthermal populations is different, mainly because of substantially higher ion reflection in the superthermal populations. Accordingly, the temperature increase of initially superthermal populations is substantially higher than that of the thermal ions. Heating per mass decreases with the increase of the mass-to-charge ratio because of the reduced effect of the cross-shock potential and, accordingly, weaker ion reflection. The findings are supported by two-dimensional hybrid simulations.  more » « less
Award ID(s):
2010450 2010144
PAR ID:
10412940
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
945
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
50
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Diffusive shock acceleration requires the production of backstreaming superthermal ions (injection) as a first step. Such ions can be generated in the process of scattering of ions in the superthermal tail off the shock front. Knowledge of the scattering of high-energy ions is essential for matching conditions of upstream and downstream distributions at the shock transition. Here we analyze the generation of backstreaming ions as a function of their initial energy in a model stationary shock and in a similar rippled shock. Rippling substantially enhances ion reflection and the generation of backstreaming ions for slightly and moderately superthermal energies, and thus is capable of ensuring ion injection into a further diffusive shock acceleration process. For high-energy ions, there is almost no difference in the fraction of backstreaming ions produced and the ion distributions between the planar stationary shock and the rippled shock.

     
    more » « less
  2. Abstract In a collisionless shock the energy of the directed flow is converted to heating and acceleration of charged particles, and to magnetic compression. In low-Mach number shocks the downstream ion distribution is made of directly transmitted ions. In higher-Mach number shocks ion reflection is important. With the increase of the Mach number, rippling develops, which is expected to affect ion dynamics. Using ion tracing in a model shock front, downstream distributions of ions are analyzed and compared for a planar stationary shock with an overshoot and a similar shock with ripples propagating along the shock front. It is shown that rippling results in the distributions, which are substantially broader and more diffuse in the phase space. Gyrotropization is sped up. Rippling is able to generate backstreaming ions, which are absent in the planar stationary case. 
    more » « less
  3. Abstract

    The evolution of plasma entropy and the process of plasma energy redistribution at the collisionless plasma shock front are evaluated based on the high temporal resolution data from the four Magnetospheric Multiscale spacecraft during the crossing of the terrestrial bow shock. The ion distribution function has been separated into the populations with different characteristic behaviors in the vicinity of the shock: the upstream core population, the reflected ions, the gyrating ions, the ions trapped in the vicinity of the shock, and the downstream core population. The values of ion and electron moments (density, bulk velocity, and temperature) have been determined separately for these populations. It is shown that the solar wind core population bulk velocity slows down mainly in the ramp with the electrostatic potential increase but not in the foot region as it was supposed. The reflected ion population determines the foot region properties, so the proton temperature peak in the foot region is an effect of the relative motion of the different ion populations, rather than an actual increase in the thermal speed of any of the ion population. The ion entropy evaluated showed a significant increase across the shock: the enhancement of the ion entropy occurs in the foot of the shock front and at the ramp, where the reflected ions are emerging in addition to the upstream solar wind ions, the anisotropy growing to generate the bursts of ion-scale electrostatic waves. The entropy of electrons across the shock does not show a significant change: electron heating goes almost adiabatically.

     
    more » « less
  4. A collisionless shock is a self-organized structure where fields and particle distributions are mutually adjusted to ensure a stable mass, momentum and energy transfer from the upstream to the downstream region. This adjustment may involve rippling, reformation or whatever else is needed to maintain the shock. The fields inside the shock front are produced due to the motion of charged particles, which is in turn governed by the fields. The overshoot arises due to the deceleration of the ion flow by the increasing magnetic field, so that the drop of the dynamic pressure should be compensated by the increase of the magnetic pressure. The role of the overshoot is to regulate ion reflection, thus properly adjusting the downstream ion temperature and kinetic pressure and also speeding up the collisionless relaxation and reducing the anisotropy of the eventually gyrotropized distributions. 
    more » « less
  5. ABSTRACT

    We study the wide-binary eccentricity (e) distribution in young star clusters and the role of turbulence in setting the form of the e distribution using magnetohydrodynamical simulations of star cluster formation. The simulations incorporate gravity, turbulence, magnetic fields, protostellar heating, and jets/outflows. We find that (1) simulations that employ purely compressive turbulence driving produce binaries with a superthermal e distribution [$\alpha \gt 1$ in $p(e) \propto e^\alpha$], while simulations with purely solenoidal driving or natural mixture of driving modes produce subthermal/thermal distributions ($\alpha \le$ 1), (2) the e distribution over the full range of binary separations in our simulations is set at the early stages of the star cluster formation process, (3) while binaries (separation of $r_{\mathrm{pair}} \le 1000\, \mathrm{AU}$) have subthermal to thermal e distributions ($\alpha \sim 0.8$), wide binaries ($r_{\mathrm{pair}} \gt 1000\, \mathrm{AU}$) have a superthermal distribution ($\alpha \sim 1.8$), and (4) low-mass binary systems (system masses of $M_{\mathrm{sys}} \le 0.8\, \mathrm{M_\odot }$) have a highly superthermal distribution ($\alpha \sim 2.4$), whereas high-mass systems ($M_{\mathrm{sys}} \gt 0.8\, \mathrm{M_\odot }$) exhibit a subthermal/thermal distribution ($\alpha \sim 0.8$). The binary eccentricity distribution is often modelled as a thermal distribution. However, our results suggest that the e distribution depends on the range of separation of the sampled binaries, which agrees with the findings from recent Gaia observations. We conclude that the dependence of the e distribution on the binary separation and mass is linked to the binary formation mechanism governed by the turbulent properties of the parent cloud.

     
    more » « less