skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bioinformatic Approaches for Characterizing Molecular Structure and Function of Food Proteins
Structural bioinformatics analyzes protein structural models with the goal of uncovering molecular drivers of food functionality. This field aims to develop tools that can rapidly extract relevant information from protein databases as well as organize this information for researchers interested in studying protein functionality. Food bioinformaticians take advantage of millions of protein amino acid sequences and structures contained within these databases, extracting features such as surface hydrophobicity that are then used to model functionality, including solubility, thermostability, and emulsification. This work is aided by a protein structure–function relationship framework, in which bioinformatic properties are linked to physicochemical experimentation. Strong bioinformatic correlations exist for protein secondary structure, electrostatic potential, and surface hydrophobicity. Modeling changes in protein structures through molecular mechanics is an increasingly accessible field that will continue to propel food science research.  more » « less
Award ID(s):
2003635
PAR ID:
10412946
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Annual Review of Food Science and Technology
Volume:
14
Issue:
1
ISSN:
1941-1413
Page Range / eLocation ID:
203 to 224
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Structures of proteins and protein–protein complexes are determined by the same physical principles and thus share a number of similarities. At the same time, there could be differences because in order to function, proteins interact with other molecules, undergo conformations changes, and so forth, which might impose different restraints on the tertiary versus quaternary structures. This study focuses on structural properties of protein–protein interfaces in comparison with the protein core, based on the wealth of currently available structural data and new structure‐based approaches. The results showed that physicochemical characteristics, such as amino acid composition, residue–residue contact preferences, and hydrophilicity/hydrophobicity distributions, are similar in protein core and protein–protein interfaces. On the other hand, characteristics that reflect the evolutionary pressure, such as structural composition and packing, are largely different. The results provide important insight into fundamental properties of protein structure and function. At the same time, the results contribute to better understanding of the ways to dock proteins. Recent progress in predicting structures of individual proteins follows the advancement of deep learning techniques and new approaches to residue coevolution data. Protein core could potentially provide large amounts of data for application of the deep learning to docking. However, our results showed that the core motifs are significantly different from those at protein–protein interfaces, and thus may not be directly useful for docking. At the same time, such difference may help to overcome a major obstacle in application of the coevolutionary data to docking—discrimination of the intramolecular information not directly relevant to docking. 
    more » « less
  2. Abstract Structural, regulatory and enzymatic proteins interact with DNA to maintain a healthy and functional genome. Yet, our structural understanding of how proteins interact with DNA is limited. We present MELD-DNA, a novel computational approach to predict the structures of protein–DNA complexes. The method combines molecular dynamics simulations with general knowledge or experimental information through Bayesian inference. The physical model is sensitive to sequence-dependent properties and conformational changes required for binding, while information accelerates sampling of bound conformations. MELD-DNA can: (i) sample multiple binding modes; (ii) identify the preferred binding mode from the ensembles; and (iii) provide qualitative binding preferences between DNA sequences. We first assess performance on a dataset of 15 protein–DNA complexes and compare it with state-of-the-art methodologies. Furthermore, for three selected complexes, we show sequence dependence effects of binding in MELD predictions. We expect that the results presented herein, together with the freely available software, will impact structural biology (by complementing DNA structural databases) and molecular recognition (by bringing new insights into aspects governing protein–DNA interactions). 
    more » « less
  3. The goal of precision medicine is to utilize our knowledge of the molecular causes of disease to better diagnose and treat patients. However, there is a substantial mismatch between the small number of food and drug administration (FDA)‐approved drugs and annotated coding variants compared to the needs of precision medicine. This review introduces the concept of physics‐based precision medicine, a scalable framework that promises to improve our understanding of sequence–function relationships and accelerate drug discovery. We show that accounting for the ensemble of structures a protein adopts in solution with computer simulations overcomes many of the limitations imposed by assuming a single protein structure. We highlight studies of protein dynamics and recent methods for the analysis of structural ensembles. These studies demonstrate that differences in conformational distributions predict functional differences within protein families and between variants. Thanks to new computational tools that are providing unprecedented access to protein structural ensembles, this insight may enable accurate predictions of variant pathogenicity for entire libraries of variants. We further show that explicitly accounting for protein ensembles, with methods like alchemical free energy calculations or docking to Markov state models, can uncover novel lead compounds. To conclude, we demonstrate that cryptic pockets, or cavities absent in experimental structures, provide an avenue to target proteins that are currently considered undruggable. Taken together, our review provides a roadmap for the field of protein science to accelerate precision medicine. 
    more » « less
  4. Mechanoactive proteins are essential for a myriad of physiological and pathological processes. Guided by the advances in single-molecule force spectroscopy (SMFS), we have reached a molecular-level understanding of how mechanoactive proteins sense and respond to mechanical forces. However, even SMFS has its limitations, including the lack of detailed structural information during force-loading experiments. That is where molecular dynamics (MD) methods shine, bringing atomistic details with femtosecond time-resolution. However, MD heavily relies on the availability of high-resolution structural data, which is not available for most proteins. For instance, the Protein Data Bank currently has 192K structures deposited, against 231M protein sequences available on Uniprot. But many are betting that this gap might become much smaller soon. Over the past year, the AI-based AlphaFold created a buzz on the structural biology field by being able to predict near-native protein folds from their sequences. For some, AlphaFold is causing the merge of structural biology with bioinformatics. Here, using an in silico SMFS approach pioneered by our group, we investigate how reliable AlphaFold structure predictions are to investigate mechanical properties of Staphylococcus bacteria adhesins proteins. Our results show that AlphaFold produce extremally reliable protein folds, but in many cases is unable to predict high-resolution protein complexes accurately. Nonetheless, the results show that AlphaFold can revolutionize the investigation of these proteins, particularly by allowing high-throughput scanning of protein structures. Meanwhile, we show that the AlphaFold results need to be validated and should not be employed blindly, with the risk of obtaining an erroneous protein mechanism. 
    more » « less
  5. Abstract With the progress of structural biology, the Protein Data Bank (PDB) has witnessed rapid accumulation of experimentally solved protein structures. Since many structures are determined with purification and crystallization additives that are unrelated to a protein's in vivo function, it is nontrivial to identify the subset of protein–ligand interactions that are biologically relevant. We developed the BioLiP2 database (https://zhanggroup.org/BioLiP) to extract biologically relevant protein–ligand interactions from the PDB database. BioLiP2 assesses the functional relevance of the ligands by geometric rules and experimental literature validations. The ligand binding information is further enriched with other function annotations, including Enzyme Commission numbers, Gene Ontology terms, catalytic sites, and binding affinities collected from other databases and a manual literature survey. Compared to its predecessor BioLiP, BioLiP2 offers significantly greater coverage of nucleic acid-protein interactions, and interactions involving large complexes that are unavailable in PDB format. BioLiP2 also integrates cutting-edge structural alignment algorithms with state-of-the-art structure prediction techniques, which for the first time enables composite protein structure and sequence-based searching and significantly enhances the usefulness of the database in structure-based function annotations. With these new developments, BioLiP2 will continue to be an important and comprehensive database for docking, virtual screening, and structure-based protein function analyses. 
    more » « less