Despite the importance of active galactic nuclei (AGNs) in galaxy evolution, accurate AGN identification is often challenging, as common AGN diagnostics can be confused by contributions from star formation and other effects (e.g., Baldwin–Phillips–Terlevich diagrams). However, one promising avenue for identifying AGNs is “coronal emission lines” (“CLs”), which are highly ionized species of gas with ionization potentials ≥100 eV. These CLs may serve as excellent signatures for the strong ionizing continuum of AGNs. To determine if CLs are in fact strong AGN tracers, we assemble and analyze the largest catalog of optical CL galaxies using the Sloan Digital Sky Survey's Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) catalog. We detect CL emission in 71 MaNGA galaxies, out of the 10,010 unique galaxies from the final MaNGA catalog, with ≥5
We analyze a sample of 25 [Ne
- Award ID(s):
- 1945546
- NSF-PAR ID:
- 10413051
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 948
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- Article No. 112
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract σ confidence. In our sample, we measure [Nev ]λ 3347,λ 3427, [Fevii ]λ 3586,λ 3760,λ 6086, and [Fex ]λ 6374 emission and crossmatch the CL galaxies with a catalog of AGNs that were confirmed with broad-line, X-ray, IR, and radio observations. We find that [Nev ] emission, compared to [Fevii ] and [Fex ] emission, is best at identifying high-luminosity AGNs. Moreover, we find that the CL galaxies with the least dust extinction yield the most iron CL detections. We posit that the bulk of the iron CLs are destroyed by dust grains in the galaxies with the highest [Oiii ] luminosities in our sample, and that AGNs in the galaxies with low [Oiii ] luminosities are possibly too weak to be detected using traditional techniques. -
Abstract Spectroscopic studies of extreme-ionization galaxies (EIGs) are critical to our understanding of exotic systems throughout cosmic time. These EIGs exhibit spectral features requiring >54.42 eV photons: the energy needed to ionize helium into He2+fully and emit He
ii recombination lines. Spectroscopic studies of EIGs can probe exotic stellar populations or accretion onto intermediate-mass black holes (∼102–105M ⊙), which are the possibly key contributors to the reionization of the Universe. To facilitate the use of EIGs as probes of high-ionization systems, we focus on ratios constructed from several rest-frame UV/optical emission lines: [Oiii ]λ 5008, Hβ , [Neiii ]λ 3870, [Oii ]λ λ 3727, 3729, and [Nev ]λ 3427. These lines probe the relative intensity at energies of 35.12, 13.62, 40.96, 13.62, and 97.12 eV, respectively, covering a wider range of ionization than traced by other common rest-frame UV/optical techniques. We use the ratios of these lines ([Nev ]/[Neiii ] ≡ Ne53, [Oiii ]/Hβ , and [Neiii ]/[Oii ]), which are nearby in wavelength, mitigating the effects of dust attenuation and uncertainties in flux calibration. We make predictions from photoionization models constructed fromCloudy that use a broad range of stellar populations and black hole accretion models to explore the sensitivity of these line ratios to changes in the ionizing spectrum. We compare our models to observations from the Hubble Space Telescope and JWST of galaxies with strong high-ionization emission lines atz ∼ 0,z ∼ 2, and 5 <z < 8.5. We show that the Ne53 ratio can separate galaxies with ionization from “normal” stellar populations from those with active galactic nuclei and even “exotic” Population III models. We introduce new selection methods to identify galaxies with photoionization driven by Population III stars or intermediate-mass black hole accretion disks that could be identified in upcoming high-redshift spectroscopic surveys. -
Abstract We use Hubble Space Telescope Wide Field Camera 3 G102 and G141 grism spectroscopy to measure rest-frame optical emission-line ratios of 533 galaxies at
z ∼ 1.5 in the CANDELS Lyα Emission at Reionization survey. We compare [Oiii ]/Hβ versus [Sii ]/(Hα + [Nii ]) as an “unVO87” diagram for 461 galaxies and [Oiii ]/Hβ versus [Neiii ]/[Oii ] as an “OHNO” diagram for 91 galaxies. The unVO87 diagram does not effectively separate active galactic nuclei (AGN) and [Nev ] sources from star-forming galaxies, indicating that the unVO87 properties of star-forming galaxies evolve with redshift and overlap with AGN emission-line signatures atz > 1. The OHNO diagram does effectively separate X-ray AGN and [Nev ]-emitting galaxies from the rest of the population. We find that the [Oiii ]/Hβ line ratios are significantly anticorrelated with stellar mass and significantly correlated with , while [Sii ]/(Hα + [Nii ]) is significantly anticorrelated with . Comparison with MAPPINGS V photoionization models indicates that these trends are consistent with lower metallicity and higher ionization in low-mass and high-star formation rate (SFR) galaxies. We do not find evidence for redshift evolution of the emission-line ratios outside of the correlations with mass and SFR. Our results suggest that the OHNO diagram of [Oiii ]/Hβ versus [Neiii ]/[Oii ] will be a useful indicator of AGN content and gas conditions in very high-redshift galaxies to be observed by the James Webb Space Telescope. -
Abstract We present rest-frame optical emission-line flux ratio measurements for five
z > 5 galaxies observed by the James Webb Space Telescope Near-Infared Spectrograph (NIRSpec) in the SMACS 0723 Early Release Observations. We add several quality-control and post-processing steps to the NIRSpec pipeline reduction products in order to ensure reliablerelative flux calibration of emission lines that are closely separated in wavelength, despite the uncertainabsolute spectrophotometry of the current version of the reductions. Compared toz ∼ 3 galaxies in the literature, thez > 5 galaxies have similar [Oiii ]λ 5008/Hβ ratios, similar [Oiii ]λ 4364/Hγ ratios, and higher (∼0.5 dex) [NeIII ]λ 3870/[OII ]λ 3728 ratios. We compare the observations to MAPPINGS V photoionization models and find that the measured [NeIII ]λ 3870/[OII ]λ 3728, [Oiii ]λ 4364/Hγ , and [Oiii ]λ 5008/Hβ emission-line ratios are consistent with an interstellar medium (ISM) that has very high ionization ( , units of cm s−1), low metallicity (Z /Z ⊙≲ 0.2), and very high pressure ( , units of cm−3). The combination of [Oiii ]λ 4364/Hγ and [Oiii ]λ (4960 + 5008)/Hβ line ratios indicate very high electron temperatures of , further implying metallicities ofZ /Z ⊙≲ 0.2 with the application of low-redshift calibrations for “T e -based” metallicities. These observations represent a tantalizing new view of the physical conditions of the ISM in galaxies at cosmic dawn. -
ABSTRACT The ionizing photon escape fraction [Lyman continuum (LyC) fesc] of star-forming galaxies is the single greatest unknown in the reionization budget. Stochastic sightline effects prohibit the direct separation of LyC leakers from non-leakers at significant redshifts. Here we circumvent this uncertainty by inferring fesc using resolved (R > 4000) Lyman α (Lyα) profiles from the X-SHOOTER Lyα survey at z = 2 (XLS-z2). With empirically motivated criteria, we use Lyα profiles to select leakers ($f_{\mathrm{ esc}} > 20{{\ \rm per\ cent}}$) and non-leakers ($f_{\mathrm{ esc}} < 5{{\ \rm per\ cent}}$) from a representative sample of >0.2L* Lyman α emitters (LAEs). We use median stacked spectra of these subsets over λrest ≈ 1000–8000 Å to investigate the conditions for LyC fesc. Our stacks show similar mass, metallicity, MUV, and βUV. We find the following differences between leakers versus non-leakers: (i) strong nebular C iv and He ii emission versus non-detections; (ii) [O iii]/[O ii] ≈ 8.5 versus ≈3; (iii) Hα/Hβ indicating no dust versus E(B − V) ≈ 0.3; (iv) Mg ii emission close to the systemic velocity versus redshifted, optically thick Mg ii; and (v) Lyα fesc of ${\approx} 50{{\ \rm per\ cent}}$ versus ${\approx} 10{{\ \rm per\ cent}}$. The extreme equivalent widths (EWs) in leakers ([O iii]+$\mathrm{ H}\beta \approx 1100$ Å rest frame) constrain the characteristic time-scale of LyC escape to ≈3–10 Myr bursts when short-lived stars with the hardest ionizing spectra shine. The defining traits of leakers – extremely ionizing stellar populations, low column densities, a dust-free, high-ionization state interstellar medium (ISM) – occur simultaneously in the $f_{\rm esc} > 20{{\ \rm per\ cent}}$ stack, suggesting they are causally connected, and motivating why indicators like [O iii]/[O ii] may suffice to constrain fesc at z > 6 with the James Webb Space Telescope (JWST). The leakers comprise half of our sample, have a median LyC$f_{\rm esc} \approx 50{{\ \rm per\ cent}}$ (conservative range: $20\!-\!55{{\ \rm per\ cent}}$), and an ionizing production efficiency $\log ({\xi _{\rm {ion}}/\rm {Hz\ erg^{-1}}})\approx 25.9$ (conservative range: 25.7–25.9). These results show LAEs – the type of galaxies rare at z ≈ 2, but that become the norm at higher redshift – are highly efficient ionizers, with extreme ξion and prolific fesc occurring in sync.