Despite the importance of active galactic nuclei (AGNs) in galaxy evolution, accurate AGN identification is often challenging, as common AGN diagnostics can be confused by contributions from star formation and other effects (e.g., Baldwin–Phillips–Terlevich diagrams). However, one promising avenue for identifying AGNs is “coronal emission lines” (“CLs”), which are highly ionized species of gas with ionization potentials ≥100 eV. These CLs may serve as excellent signatures for the strong ionizing continuum of AGNs. To determine if CLs are in fact strong AGN tracers, we assemble and analyze the largest catalog of optical CL galaxies using the Sloan Digital Sky Survey's Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) catalog. We detect CL emission in 71 MaNGA galaxies, out of the 10,010 unique galaxies from the final MaNGA catalog, with ≥5
We analyze a sample of 25 [Ne
- Award ID(s):
- 1945546
- PAR ID:
- 10413051
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 948
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 112
- Size(s):
- Article No. 112
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract σ confidence. In our sample, we measure [Nev ]λ 3347,λ 3427, [Fevii ]λ 3586,λ 3760,λ 6086, and [Fex ]λ 6374 emission and crossmatch the CL galaxies with a catalog of AGNs that were confirmed with broad-line, X-ray, IR, and radio observations. We find that [Nev ] emission, compared to [Fevii ] and [Fex ] emission, is best at identifying high-luminosity AGNs. Moreover, we find that the CL galaxies with the least dust extinction yield the most iron CL detections. We posit that the bulk of the iron CLs are destroyed by dust grains in the galaxies with the highest [Oiii ] luminosities in our sample, and that AGNs in the galaxies with low [Oiii ] luminosities are possibly too weak to be detected using traditional techniques. -
Abstract Spectroscopic studies of extreme-ionization galaxies (EIGs) are critical to our understanding of exotic systems throughout cosmic time. These EIGs exhibit spectral features requiring >54.42 eV photons: the energy needed to ionize helium into He2+fully and emit He
ii recombination lines. Spectroscopic studies of EIGs can probe exotic stellar populations or accretion onto intermediate-mass black holes (∼102–105M ⊙), which are the possibly key contributors to the reionization of the Universe. To facilitate the use of EIGs as probes of high-ionization systems, we focus on ratios constructed from several rest-frame UV/optical emission lines: [Oiii ]λ 5008, Hβ , [Neiii ]λ 3870, [Oii ]λ λ 3727, 3729, and [Nev ]λ 3427. These lines probe the relative intensity at energies of 35.12, 13.62, 40.96, 13.62, and 97.12 eV, respectively, covering a wider range of ionization than traced by other common rest-frame UV/optical techniques. We use the ratios of these lines ([Nev ]/[Neiii ] ≡ Ne53, [Oiii ]/Hβ , and [Neiii ]/[Oii ]), which are nearby in wavelength, mitigating the effects of dust attenuation and uncertainties in flux calibration. We make predictions from photoionization models constructed fromCloudy that use a broad range of stellar populations and black hole accretion models to explore the sensitivity of these line ratios to changes in the ionizing spectrum. We compare our models to observations from the Hubble Space Telescope and JWST of galaxies with strong high-ionization emission lines atz ∼ 0,z ∼ 2, and 5 <z < 8.5. We show that the Ne53 ratio can separate galaxies with ionization from “normal” stellar populations from those with active galactic nuclei and even “exotic” Population III models. We introduce new selection methods to identify galaxies with photoionization driven by Population III stars or intermediate-mass black hole accretion disks that could be identified in upcoming high-redshift spectroscopic surveys. -
Abstract We use Hubble Space Telescope Wide Field Camera 3 G102 and G141 grism spectroscopy to measure rest-frame optical emission-line ratios of 533 galaxies at
z ∼ 1.5 in the CANDELS Lyα Emission at Reionization survey. We compare [Oiii ]/Hβ versus [Sii ]/(Hα + [Nii ]) as an “unVO87” diagram for 461 galaxies and [Oiii ]/Hβ versus [Neiii ]/[Oii ] as an “OHNO” diagram for 91 galaxies. The unVO87 diagram does not effectively separate active galactic nuclei (AGN) and [Nev ] sources from star-forming galaxies, indicating that the unVO87 properties of star-forming galaxies evolve with redshift and overlap with AGN emission-line signatures atz > 1. The OHNO diagram does effectively separate X-ray AGN and [Nev ]-emitting galaxies from the rest of the population. We find that the [Oiii ]/Hβ line ratios are significantly anticorrelated with stellar mass and significantly correlated with , while [Sii ]/(Hα + [Nii ]) is significantly anticorrelated with . Comparison with MAPPINGS V photoionization models indicates that these trends are consistent with lower metallicity and higher ionization in low-mass and high-star formation rate (SFR) galaxies. We do not find evidence for redshift evolution of the emission-line ratios outside of the correlations with mass and SFR. Our results suggest that the OHNO diagram of [Oiii ]/Hβ versus [Neiii ]/[Oii ] will be a useful indicator of AGN content and gas conditions in very high-redshift galaxies to be observed by the James Webb Space Telescope. -
Abstract We present a highly complete sample of broad-line (Type 1) QSOs out to z ∼ 3 selected by their mid-infrared colors, a method that is minimally affected by dust reddening. We remove host-galaxy emission from the spectra and fit for excess reddening in the residual QSOs, resulting in a Gaussian distribution of colors for unreddened (blue) QSOs, with a tail extending toward heavily reddened (red) QSOs, defined as having E ( B − V ) > 0.25. This radio-independent selection method enables us to compare red and blue QSO radio properties in both the FIRST (1.4 GHz) and VLASS (2–4 GHz) surveys. Consistent with recent results from optically selected QSOs from SDSS, we find that red QSOs have a significantly higher detection fraction and a higher fraction of compact radio morphologies at both frequencies. We employ radio stacking to investigate the median radio properties of the QSOs including those that are undetected in FIRST and VLASS, finding that red QSOs have significantly brighter radio emission and steeper radio spectral slopes compared with blue QSOs. Finally, we find that the incidence of red QSOs is strongly luminosity dependent, where red QSOs make up >40% of all QSOs at the highest luminosities. Overall, red QSOs comprise ∼40% of higher luminosity QSOs, dropping to only a few percent at lower luminosities. Furthermore, red QSOs make up a larger percentage of the radio-detected QSO population. We argue that dusty AGN-driven winds are responsible for both the obscuration as well as excess radio emission seen in red QSOs.more » « less
-
Abstract Galaxy emission-line fluxes can constrain star formation rates (SFRs) and interstellar medium (ISM) ionization. We investigate rest-frame optical emission lines of 71 star-forming galaxies (SFGs) at redshift 0.7 <
z < 7 using JWST/NIRSpec measurements from the Cosmic Evolution Early Release Science survey. We use Hα to measure SFR and utilize Hubble Space Telescope CANDELS stellar mass estimates to determine specific SFR (sSFR) and compare with the SFG main sequence (MS). We create [Oiii ]λ 5008/Hβ versus [Neiii ]λ 3870/[Oii ]λ 3728 line ratio diagrams. The line ratios appear to correlate with sSFR, and our results suggest that sSFR is the parameter that governs ionization conditions rather than SFR or a galaxy’s distance from the MS. These measurements reveal a rich diversity of ISM conditions and physical galaxy properties throughout cosmic time.