skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Approximately low-rank recovery from noisy and local measurements by convex program
Abstract Low-rank matrix models have been universally useful for numerous applications, from classical system identification to more modern matrix completion in signal processing and statistics. The nuclear norm has been employed as a convex surrogate of the low-rankness since it induces a low-rank solution to inverse problems. While the nuclear norm for low rankness has an excellent analogy with the $$\ell _1$$ norm for sparsity through the singular value decomposition, other matrix norms also induce low-rankness. Particularly as one interprets a matrix as a linear operator between Banach spaces, various tensor product norms generalize the role of the nuclear norm. We provide a tensor-norm-constrained estimator for the recovery of approximately low-rank matrices from local measurements corrupted with noise. A tensor-norm regularizer is designed to adapt to the local structure. We derive statistical analysis of the estimator over matrix completion and decentralized sketching by applying Maurey’s empirical method to tensor products of Banach spaces. The estimator provides a near-optimal error bound in a minimax sense and admits a polynomial-time algorithm for these applications.  more » « less
Award ID(s):
1943201 1800872 1839177 2247114
PAR ID:
10413085
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Information and Inference: A Journal of the IMA
Volume:
12
Issue:
3
ISSN:
2049-8772
Format(s):
Medium: X Size: p. 1612-1654
Size(s):
p. 1612-1654
Sponsoring Org:
National Science Foundation
More Like this
  1. Low-rank matrix recovery is a fundamental problem in machine learning with numerous applications. In practice, the problem can be solved by convex optimization namely nuclear norm minimization, or by non-convex optimization as it is well-known that for low-rank matrix problems like matrix sensing and matrix completion, all local optima of the natural non-convex objectives are also globally optimal under certain ideal assumptions. In this paper, we study new approaches for matrix sensing in a semi-random model where an adversary can add any number of arbitrary sensing matrices. More precisely, the problem is to recover a low-rank matrix $$X^\star$$ from linear measurements $$b_i = \langle A_i, X^\star \rangle$$, where an unknown subset of the sensing matrices satisfies the Restricted Isometry Property (RIP) and the rest of the $$A_i$$'s are chosen adversarially. It is known that in the semi-random model, existing non-convex objectives can have bad local optima. To fix this, we present a descent-style algorithm that provably recovers the ground-truth matrix $$X^\star$$. For the closely-related problem of semi-random matrix completion, prior work [CG18] showed that all bad local optima can be eliminated by reweighting the input data. However, the analogous approach for matrix sensing requires reweighting a set of matrices to satisfy RIP, which is a condition that is NP-hard to check. Instead, we build on the framework proposed in [KLL$^+$23] for semi-random sparse linear regression, where the algorithm in each iteration reweights the input based on the current solution, and then takes a weighted gradient step that is guaranteed to work well locally. Our analysis crucially exploits the connection between sparsity in vector problems and low-rankness in matrix problems, which may have other applications in obtaining robust algorithms for sparse and low-rank problems. 
    more » « less
  2. Spatiotemporal traffic data imputation is of great significance in intelligent transportation systems and data-driven decision-making processes. To perform efficient learning and accurate reconstruction from partially observed traffic data, we assert the importance of characterizing both global and local trends in time series. In the literature, substantial works have demonstrated the effectiveness of utilizing the low-rank property of traffic data by matrix/tensor completion models. In this study, we first introduce a Laplacian kernel to temporal regularization for characterizing local trends in traffic time series, which can be formulated as a circular convolution. Then, we develop a low-rank Laplacian convolutional representation (LCR) model by putting the circulant matrix nuclear norm and the Laplacian kernelized temporal regularization together, which is proved to meet a unified framework that has a fast Fourier transform (FFT) solution in log-linear time complexity. Through extensive experiments on several traffic datasets, we demonstrate the superiority of LCR over several baseline models for imputing traffic time series of various time series behaviors (e.g., data noises and strong/weak periodicity) and reconstructing sparse speed fields of vehicular traffic flow. The proposed LCR model is also an efficient solution to large-scale traffic data imputation over the existing imputation models. 
    more » « less
  3. null (Ed.)
    Matrix completion, the problem of completing missing entries in a data matrix with low-dimensional structure (such as rank), has seen many fruitful approaches and analyses. Tensor completion is the tensor analog that attempts to impute missing tensor entries from similar low-rank type assumptions. In this paper, we study the tensor completion problem when the sampling pattern is deterministic and possibly non-uniform. We first propose an efficient weighted Higher Order Singular Value Decomposition (HOSVD) algorithm for the recovery of the underlying low-rank tensor from noisy observations and then derive the error bounds under a properly weighted metric. Additionally, the efficiency and accuracy of our algorithm are both tested using synthetic and real datasets in numerical simulations. 
    more » « less
  4. Synchrophasor data suffer from quality issues like missing and bad data. Exploiting the low-rankness of the Hankel matrix of the synchrophasor data, this paper formulates the data recovery problem as a robust low-rank Hankel matrix completion problem and proposes a Bayesian data recovery method that estimates the posterior distribution of synchrophasor data from partial observations. In contrast to the deterministic approaches, our proposed Bayesian method provides an uncertainty index to evaluate the confidence of each estimation. To the best of our knowledge, this is the first method that provides confidence measure for synchrophasor data recovery. Numerical experiments on synthetic data and recorded synchrophasor data demonstrate that our method outperforms existing low-rank matrix completion methods. 
    more » « less
  5. Fractional Leibniz rules are reminiscent of the product rule learned in calculus classes, offering estimates in the Lebesgue norm for fractional derivatives of a product of functions in terms of the Lebesgue norms of each function and its fractional derivatives. We prove such estimates for Coifman-Meyer multiplier operators in the setting of Triebel-Lizorkin and Besov spaces based on quasi-Banach function spaces. In particular, these include rearrangement invariant quasi-Banach function spaces such as weighted Lebesgue spaces, weighted Lorentz spaces and generalizations, and Orlicz spaces. The method used also yields results in weighted mixed Lebesgue spaces and Morrey spaces, where we present applications to the specific case of power weights, as well as in variable Lebesgue spaces. 
    more » « less