skip to main content

Title: HOSVD-Based Algorithm for Weighted Tensor Completion
Matrix completion, the problem of completing missing entries in a data matrix with low-dimensional structure (such as rank), has seen many fruitful approaches and analyses. Tensor completion is the tensor analog that attempts to impute missing tensor entries from similar low-rank type assumptions. In this paper, we study the tensor completion problem when the sampling pattern is deterministic and possibly non-uniform. We first propose an efficient weighted Higher Order Singular Value Decomposition (HOSVD) algorithm for the recovery of the underlying low-rank tensor from noisy observations and then derive the error bounds under a properly weighted metric. Additionally, the efficiency and accuracy of our algorithm are both tested using synthetic and real datasets in numerical simulations.
; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of Imaging
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Context has been recognized as an important factor to consider in personalized recommender systems. Particularly in location-based services (LBSs), a fundamental task is to recommend to a mobile user where he/she could be interested to visit next at the right time. Additionally, location-based social networks (LBSNs) allow users to share location-embedded information with friends who often co-occur in the same or nearby points-of-interest (POIs) or share similar POI visiting histories, due to the social homophily theory and Tobler’s first law of geography. So, both the time information and LBSN friendship relations should be utilized for POI recommendation. Tensor completion has recently gained some attention in time-aware recommender systems. The problem decomposes a user-item-time tensor into low-rank embedding matrices of users, items and times using its observed entries, so that the underlying low-rank subspace structure can be tracked to fill the missing entries for time-aware recommendation. However, these tensor completion methods ignore the social-spatial context information available in LBSNs, which is important for POI recommendation since people tend to share their preferences with their friends, and near things are more related than distant things. In this paper, we utilize the side information of social networks and POI locations to enhance themore »tensor completion model paradigm for more effective time-aware POI recommendation. Specifically, we propose a regularization loss head based on a novel social Hausdorff distance function to optimize the reconstructed tensor. We also quantify the popularity of different POIs with location entropy to prevent very popular POIs from being over-represented hence suppressing the appearance of other more diverse POIs. To address the sensitivity of negative sampling, we train the model on the whole data by treating all unlabeled entries in the observed tensor as negative, and rewriting the loss function in a smart way to reduce the computational cost. Through extensive experiments on real datasets, we demonstrate the superiority of our model over state-of-the-art tensor completion methods.« less
  2. We propose a new fast streaming algorithm for the tensor completion problem of imputing missing entries of a lowtubal-rank tensor using the tensor singular value decomposition (t-SVD) algebraic framework. We show the t-SVD is a specialization of the well-studied block-term decomposition for third-order tensors, and we present an algorithm under this model that can track changing free submodules from incomplete streaming 2-D data. The proposed algorithm uses principles from incremental gradient descent on the Grassmann manifold of subspaces to solve the tensor completion problem with linear complexity and constant memory in the number of time samples. We provide a local expected linear convergence result for our algorithm. Our empirical results are competitive in accuracy but much faster in compute time than state-of-the-art tensor completion algorithms on real applications to recover temporal chemo-sensing and MRI data under limited sampling.
  3. We propose a new online algorithm, called TOUCAN, forthe tensor completion problem of imputing missing entriesof a low tubal-rank tensor using the tensor-tensor product (t-product) and tensor singular value decomposition (t-SVD) al-gebraic framework. We also demonstrate TOUCAN’s abilityto track changing free submodules from highly incompletestreaming 2-D data. TOUCAN uses principles from incre-mental gradient descent on the Grassmann manifold to solvethe tensor completion problem with linear complexity andconstant memory in the number of time samples. We com-pare our results to state-of-the-art batch tensor completion al-gorithms and matrix completion algorithms. We show our re-sults on real applications to recover temporal MRI data underlimited sampling.
  4. We consider the problem of tensor estimation from noisy observations with possibly missing entries. A nonparametric approach to tensor completion is developed based on a new model which we coin as sign representable tensors. The model represents the signal tensor of interest using a series of structured sign tensors. Unlike earlier methods, the sign series representation effectively addresses both low- and high-rank signals, while encompassing many existing tensor models— including CP models, Tucker models, single index models, structured tensors with repeating entries—as special cases. We provably reduce the tensor estimation problem to a series of structured classification tasks, and we develop a learning reduction machinery to empower existing low-rank tensor algorithms for more challenging high-rank estimation. Excess risk bounds, estimation errors, and sample complexities are established. We demonstrate the outperformance of our approach over previous methods on two datasets, one on human brain connectivity networks and the other on topic data mining.
  5. We address the problem of high-rank matrix completion with side information. In contrast to existing work dealing with side information, which assume that the data matrix is low-rank, we consider the more general scenario where the columns of the data matrix are drawn from a union of low-dimensional subspaces, which can lead to a high rank matrix. Our goal is to complete the matrix while taking advantage of the side information. To do so, we use the self-expressive property of the data, searching for a sparse representation of each column of matrix as a combination of a few other columns. More specifically, we propose a factorization of the data matrix as the product of side information matrices with an unknown interaction matrix, under which each column of the data matrix can be reconstructed using a sparse combination of other columns. As our proposed optimization, searching for missing entries and sparse coefficients, is non-convex and NP-hard, we propose a lifting framework, where we couple sparse coefficients and missing values and define an equivalent optimization that is amenable to convex relaxation. We also propose a fast implementation of our convex framework using a Linearized Alternating Direction Method. By extensive experiments on bothmore »synthetic and real data, and, in particular, by studying the problem of multi-label learning, we demonstrate that our method outperforms existing techniques in both low-rank and high-rank data regimes« less