skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bayesian robust hankel matrix completion with uncertainty modeling for synchrophasor data recovery
Synchrophasor data suffer from quality issues like missing and bad data. Exploiting the low-rankness of the Hankel matrix of the synchrophasor data, this paper formulates the data recovery problem as a robust low-rank Hankel matrix completion problem and proposes a Bayesian data recovery method that estimates the posterior distribution of synchrophasor data from partial observations. In contrast to the deterministic approaches, our proposed Bayesian method provides an uncertainty index to evaluate the confidence of each estimation. To the best of our knowledge, this is the first method that provides confidence measure for synchrophasor data recovery. Numerical experiments on synthetic data and recorded synchrophasor data demonstrate that our method outperforms existing low-rank matrix completion methods.  more » « less
Award ID(s):
1932196
PAR ID:
10349430
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM SIGEnergy Energy Informatics Review
Volume:
2
Issue:
1
ISSN:
2770-5331
Page Range / eLocation ID:
1 to 19
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Matrix completion, the problem of completing missing entries in a data matrix with low-dimensional structure (such as rank), has seen many fruitful approaches and analyses. Tensor completion is the tensor analog that attempts to impute missing tensor entries from similar low-rank type assumptions. In this paper, we study the tensor completion problem when the sampling pattern is deterministic and possibly non-uniform. We first propose an efficient weighted Higher Order Singular Value Decomposition (HOSVD) algorithm for the recovery of the underlying low-rank tensor from noisy observations and then derive the error bounds under a properly weighted metric. Additionally, the efficiency and accuracy of our algorithm are both tested using synthetic and real datasets in numerical simulations. 
    more » « less
  2. This work attempts to recover digital signals from a few stochastic samples in time domain. The target signal is the linear combination of one-dimensional complex sine components with R different but continuous frequencies. These frequencies control the continuous values in the domain of normalized frequency [0, 1), contrary to the previous research into compressed sensing. To recover the target signal, the problem was transformed into the completion of a low-rank structured matrix, drawing on the linear property of the Hankel matrix. Based on the completion of the structured matrix, the authors put forward a feasible-point algorithm, analyzed its convergence, and speeded up the convergence with the fast iterative shrinkage-thresholding (FIST) algorithm. The initial algorithm and the speed up strategy were proved effective through repeated numerical simulations. The research results shed new lights on the signal recovery in various fields. 
    more » « less
  3. This paper presents time-domain measurement data-based dynamic model parameter estimation for synchronous generators and inverter-based resources (IBRs). While prediction error method (PEM) is a well-known and popular method, it requires a good initial guess of parameters which should be in the domain of convergence. Recently, the system identification community has made significant progress in improving the PEM method by taking into consideration of the characteristics of the low-rank data Hankel matrix. In turn, an estimation problem can be formulated as a rank-constraint optimization problem, and further a difference of convex programming (DCP) problem. This paper adopted the data Hankel matrix fitting strategy and developed the problem formulation for the parameter estimation problems for synchronous generators and IBRs. These two examples are presented and the results are satisfying. 
    more » « less
  4. We consider the problem of finding the lowest order stable rational transfer function that interpolates a set of given noisy time and frequency domain data points. Our main result shows that exploiting results from rational interpolation theory allows for recasting this problem as minimizing the rank of a matrix constructed from the frequency domain data (the Loewner matrix) along with the Hankel matrix of time domain data, subject to a semidefinite constraint that enforces stability and consistency between the time and frequency domain data. These results are applied to a practical problem: identifying a system from noisy measurements of its time and frequency responses. The proposed method is able to obtain stable low order models using substantially smaller matrices than those reported earlier and consequently in a fraction of the computation time. 
    more » « less
  5. We propose a primal-dual based framework for analyzing the global optimality of nonconvex low-rank matrix recovery. Our analysis are based on the restricted strongly convex and smooth conditions, which can be verified for a broad family of loss functions. In addition, our analytic framework can directly handle the widely-used incoherence constraints through the lens of duality. We illustrate the applicability of the proposed framework to matrix completion and one-bit matrix completion, and prove that all these problems have no spurious local minima. Our results not only improve the sample complexity required for characterizing the global optimality of matrix completion, but also resolve an open problem in Ge et al. (2017) regarding one-bit matrix completion. Numerical experiments show that primal-dual based algorithm can successfully recover the global optimum for various low-rank problems. 
    more » « less