skip to main content


Title: Bayesian robust hankel matrix completion with uncertainty modeling for synchrophasor data recovery
Synchrophasor data suffer from quality issues like missing and bad data. Exploiting the low-rankness of the Hankel matrix of the synchrophasor data, this paper formulates the data recovery problem as a robust low-rank Hankel matrix completion problem and proposes a Bayesian data recovery method that estimates the posterior distribution of synchrophasor data from partial observations. In contrast to the deterministic approaches, our proposed Bayesian method provides an uncertainty index to evaluate the confidence of each estimation. To the best of our knowledge, this is the first method that provides confidence measure for synchrophasor data recovery. Numerical experiments on synthetic data and recorded synchrophasor data demonstrate that our method outperforms existing low-rank matrix completion methods.  more » « less
Award ID(s):
1932196
NSF-PAR ID:
10349430
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM SIGEnergy Energy Informatics Review
Volume:
2
Issue:
1
ISSN:
2770-5331
Page Range / eLocation ID:
1 to 19
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Low-rank matrix recovery is a fundamental problem in machine learning with numerous applications. In practice, the problem can be solved by convex optimization namely nuclear norm minimization, or by non-convex optimization as it is well-known that for low-rank matrix problems like matrix sensing and matrix completion, all local optima of the natural non-convex objectives are also globally optimal under certain ideal assumptions. In this paper, we study new approaches for matrix sensing in a semi-random model where an adversary can add any number of arbitrary sensing matrices. More precisely, the problem is to recover a low-rank matrix $X^\star$ from linear measurements $b_i = \langle A_i, X^\star \rangle$, where an unknown subset of the sensing matrices satisfies the Restricted Isometry Property (RIP) and the rest of the $A_i$'s are chosen adversarially. It is known that in the semi-random model, existing non-convex objectives can have bad local optima. To fix this, we present a descent-style algorithm that provably recovers the ground-truth matrix $X^\star$. For the closely-related problem of semi-random matrix completion, prior work [CG18] showed that all bad local optima can be eliminated by reweighting the input data. However, the analogous approach for matrix sensing requires reweighting a set of matrices to satisfy RIP, which is a condition that is NP-hard to check. Instead, we build on the framework proposed in [KLL$^+$23] for semi-random sparse linear regression, where the algorithm in each iteration reweights the input based on the current solution, and then takes a weighted gradient step that is guaranteed to work well locally. Our analysis crucially exploits the connection between sparsity in vector problems and low-rankness in matrix problems, which may have other applications in obtaining robust algorithms for sparse and low-rank problems. 
    more » « less
  2. null (Ed.)
    Matrix completion, the problem of completing missing entries in a data matrix with low-dimensional structure (such as rank), has seen many fruitful approaches and analyses. Tensor completion is the tensor analog that attempts to impute missing tensor entries from similar low-rank type assumptions. In this paper, we study the tensor completion problem when the sampling pattern is deterministic and possibly non-uniform. We first propose an efficient weighted Higher Order Singular Value Decomposition (HOSVD) algorithm for the recovery of the underlying low-rank tensor from noisy observations and then derive the error bounds under a properly weighted metric. Additionally, the efficiency and accuracy of our algorithm are both tested using synthetic and real datasets in numerical simulations. 
    more » « less
  3. We consider the problem of finding the lowest order stable rational transfer function that interpolates a set of given noisy time and frequency domain data points. Our main result shows that exploiting results from rational interpolation theory allows for recasting this problem as minimizing the rank of a matrix constructed from the frequency domain data (the Loewner matrix) along with the Hankel matrix of time domain data, subject to a semidefinite constraint that enforces stability and consistency between the time and frequency domain data. These results are applied to a practical problem: identifying a system from noisy measurements of its time and frequency responses. The proposed method is able to obtain stable low order models using substantially smaller matrices than those reported earlier and consequently in a fraction of the computation time. 
    more » « less
  4. This paper presents time-domain measurement data-based dynamic model parameter estimation for synchronous generators and inverter-based resources (IBRs). While prediction error method (PEM) is a well-known and popular method, it requires a good initial guess of parameters which should be in the domain of convergence. Recently, the system identification community has made significant progress in improving the PEM method by taking into consideration of the characteristics of the low-rank data Hankel matrix. In turn, an estimation problem can be formulated as a rank-constraint optimization problem, and further a difference of convex programming (DCP) problem. This paper adopted the data Hankel matrix fitting strategy and developed the problem formulation for the parameter estimation problems for synchronous generators and IBRs. These two examples are presented and the results are satisfying. 
    more » « less
  5. The matrix completion problem seeks to recover a $d\times d$ ground truth matrix of low rank $r\ll d$ from observations of its individual elements. Real-world matrix completion is often a huge-scale optimization problem, with $d$ so large that even the simplest full-dimension vector operations with $O(d)$ time complexity become prohibitively expensive. Stochastic gradient descent (SGD) is one of the few algorithms capable of solving matrix completion on a huge scale, and can also naturally handle streaming data over an evolving ground truth. Unfortunately, SGD experiences a dramatic slow-down when the underlying ground truth is ill-conditioned; it requires at least $O(\kappa\log(1/\epsilon))$ iterations to get $\epsilon$-close to ground truth matrix with condition number $\kappa$. In this paper, we propose a preconditioned version of SGD that preserves all the favorable practical qualities of SGD for huge-scale online optimization while also making it agnostic to $\kappa$. For a symmetric ground truth and the Root Mean Square Error (RMSE) loss, we prove that the preconditioned SGD converges to $\epsilon$-accuracy in $O(\log(1/\epsilon))$ iterations, with a rapid linear convergence rate as if the ground truth were perfectly conditioned with $\kappa=1$. In our numerical experiments, we observe a similar acceleration for ill-conditioned matrix completion under the 1-bit cross-entropy loss, as well as pairwise losses such as the Bayesian Personalized Ranking (BPR) loss. 
    more » « less