skip to main content


Title: A Barrier Certificate-based Simplex Architecture with Application to Microgrids
We present Barrier-based Simplex (Bb-Simplex), a new, provably correct design for runtime assurance of continuous dynamical systems. Bb-Simplex is centered around the Simplex Control Architecture, which consists of a high-performance advanced controller which is not guaranteed to maintain safety of the plant, a verified-safe baseline controller, and a decision module that switches control of the plant between the two controllers to ensure safety without sacrificing performance. In Bb-Simplex, Barrier certificates are used to prove that the baseline controller ensures safety. Furthermore, Bb-Simplex features a new automated method for deriving, from the barrier certificate, the conditions for switching between the controllers. Our method is based on the Taylor expansion of the barrier certificate and yields computationally inexpensive switching conditions. We consider a significant application of Bb-Simplex to a microgrid featuring an advanced controller in the form of a neural network trained using reinforcement learning. The microgrid is modeled in RTDS, an industry-standard high-fidelity, real-time power systems simulator. Our results demonstrate that Bb-Simplex can automatically derive switching conditions for complex systems, the switching conditions are not overly conservative, and Bb-Simplex ensures safety even in the presence of adversarial attacks on the neural controller.  more » « less
Award ID(s):
1954837 2040599 2134840
NSF-PAR ID:
10413110
Author(s) / Creator(s):
; ; ;
Editor(s):
Dang, Thao; Stolz, Volker
Date Published:
Journal Name:
22nd International Conference on Runtime Verification (RV 2022)
Page Range / eLocation ID:
105-123
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present the Distributed Simplex Architecture (DSA), a new runtime assurance technique that provides safety guarantees for multi-agent systems (MASs). DSA is inspired by the Simplex control architecture of Sha et al., but with some significant differences. The traditional Simplex approach is limited to single-agent systems or a MAS with a centralized control scheme. DSA addresses this limitation by extending the scope of Simplex to include MASs under distributed control. In DSA, each agent runs a local instance of traditional Simplex such that the preservation of safety in the local instances implies safety for the entire MAS. Control Barrier Functions play a critical role. They are used to define DSA’s core components (the baseline controller and the decision module’s switching logic between advanced and baseline controllers) and to verify the safety of a DSA instance in a distributed manner. We provide a general proof of safety for DSA, and present experimental results for several case studies, including flocking with collision avoidance, safe navigation of ground rovers through way-points, and the safe operation of a microgrid. 
    more » « less
  2. he Simplex Architecture is a runtime assurance framework where control authority may switch from an unverified and potentially unsafe advanced controller to a backup baseline controller in order to maintain the safety of an autonomous cyber-physical system. In this work, we show that runtime checks can replace the requirement to statically verify safety of the baseline controller. This is important as there are many powerful control techniques, such as model-predictive control and neural network controllers, that work well in practice but are difficult to statically verify. Since the method does not use internal information about the advanced or baseline controller, we call the approach the Black-Box Simplex Architecture. We prove the architecture is safe and present two case studies where (i) model-predictive control provides safe multi-robot coordination, and (ii) neural networks provably prevent collisions in groups of F-16 aircraft, despite the controllers occasionally outputting unsafe commands. 
    more » « less
  3. Real-time controllers must satisfy strict safety requirements. Recently, Control Barrier Functions (CBFs) have been proposed that guarantee safety by ensuring that a suitablydefined barrier function remains bounded for all time. The CBF method, however, has only been developed for deterministic systems and systems with worst-case disturbances and uncertainties. In this paper, we develop a CBF framework for safety of stochastic systems. We consider complete information systems, in which the controller has access to the exact system state, as well as incomplete information systems where the state must be reconstructed from noisy measurements. In the complete information case, we formulate a notion of barrier functions that leads to sufficient conditions for safety with probability 1. In the incomplete information case, we formulate barrier functions that take an estimate from an extended Kalman filter as input, and derive bounds on the probability of safety as a function of the asymptotic error in the filter. We show that, in both cases, the sufficient conditions for safety can be mapped to linear constraints on the control input at each time, enabling the development of tractable optimization-based controllers that guarantee safety, performance, and stability. Our approach is evaluated via simulation study on an adaptive cruise control case study. 
    more » « less
  4. Self-driving cars and trucks, autonomous vehicles (AVs), should not be accepted by regulatory bodies and the public until they have much higher confidence in their safety and reliability --- which can most practically and convincingly be achieved by testing. But existing testing methods are inadequate for checking the end-to-end behaviors of AV controllers against complex, real-world corner cases involving interactions with multiple independent agents such as pedestrians and human-driven vehicles. While test-driving AVs on streets and highways fails to capture many rare events, existing simulation-based testing methods mainly focus on simple scenarios and do not scale well for complex driving situations that require sophisticated awareness of the surroundings. To address these limitations, we propose a new fuzz testing technique, called AutoFuzz, which can leverage widely-used AV simulators' API grammars to generate semantically and temporally valid complex driving scenarios (sequences of scenes). To efficiently search for traffic violations-inducing scenarios in a large search space, we propose a constrained neural network (NN) evolutionary search method to optimize AutoFuzz. Evaluation of our prototype on one state-of-the-art learning-based controller, two rule-based controllers, and one industrial-grade controller in five scenarios shows that AutoFuzz efficiently finds hundreds of traffic violations in high-fidelity simulation environments. For each scenario, AutoFuzz can find on average 10-39% more unique traffic violations than the best-performing baseline method. Further, fine-tuning the learning-based controller with the traffic violations found by AutoFuzz successfully reduced the traffic violations found in the new version of the AV controller software. 
    more » « less
  5. Modern nonlinear control theory seeks to endow systems with properties such as stability and safety, and has been deployed successfully across various domains. Despite this success, model uncertainty remains a significant challenge in ensuring that model-based controllers transfer to real world systems. This paper develops a data-driven approach to robust control synthesis in the presence of model uncertainty using Control Certificate Functions (CCFs), resulting in a convex optimization based controller for achieving properties like stability and safety. An important benefit of our framework is nuanced data-dependent guarantees, which in principle can yield sample-efficient data collection approaches that need not fully determine the input-to-state relationship. This work serves as a starting point for addressing important questions at the intersection of nonlinear control theory and non-parametric learning, both theoretical and in application. We demonstrate the efficiency of the proposed method with respect to input data in simulation with an inverted pendulum in multiple experimental settings. 
    more » « less