skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Safe Control of Euler-Lagrange Systems with Limited Model Information
This work presents a new safe control framework for Euler-Lagrange (EL) systems with limited model information, external disturbances, and measurement uncertainties. The EL system is decomposed into two subsystems called the proxy subsystem and the virtual tracking subsystem. An adaptive safe controller based on barrier Lyapunov functions is designed for the virtual tracking subsystem to ensure the boundedness of the safe velocity tracking error, and a safe controller based on control barrier functions is designed for the proxy subsystem to ensure controlled invariance of the safe set defined either in the joint space or task space. Theorems that guarantee the safety of the proposed controllers are provided. In contrast to existing safe control strategies for EL systems, the proposed method requires much less model information and can ensure safety rather than input-to-state safety. Simulation results are provided to illustrate the effectiveness of the proposed method.  more » « less
Award ID(s):
2237850 2209791
PAR ID:
10492975
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
62nd IEEE Conference on Decision and Control (CDC)
ISBN:
979-8-3503-0124-3
Page Range / eLocation ID:
5722-5728
Format(s):
Medium: X
Location:
Singapore, Singapore
Sponsoring Org:
National Science Foundation
More Like this
  1. This article addresses the quadrotors’ safety-critical landing control problem with external uncertainties and collision avoidance. A geometrically robust hierarchical control strategy is proposed for an underactuated quadrotor, which consists of a slow outer loop controlling the position and a fast inner loop regulating the attitude. First, an estimation error quantified (EEQ) observer is developed to identify and compensate for the target’s linear acceleration and the translational disturbances, whose estimation error has a nonnegative upper bound. Furthermore, an outer-loop controller is designed by embedding the EEQ observer and control barrier functions (CBFs), in which the negative effects of external uncertainties, collision avoidance, and input saturation are thoroughly considered and effectively attenuated. For the inner-loop subsystem, a geometric controller with a robust integral of the sign of the error (RISE) control structure is developed to achieve disturbances rejection and asymptotic attitude tracking. Based on Lyapunov techniques and the theory of cascade systems, it is rigorously proven that the closed-loop system is uniformly ultimately bounded. Finally, the effectiveness of the proposed control strategy is demonstrated through numerical simulations and hardware experiments. 
    more » « less
  2. Matni, Nikolai; Morari, Manfred; Pappas, George J. (Ed.)
    Safe reinforcement learning (RL) with assured satisfaction of hard state constraints during training has recently received a lot of attention. Safety filters, e.g., based on control barrier functions (CBFs), provide a promising way for safe RL via modifying the unsafe actions of an RL agent on the fly. Existing safety filter-based approaches typically involve learning of uncertain dynamics and quantifying the learned model error, which leads to conservative filters before a large amount of data is collected to learn a good model, thereby preventing efficient exploration. This paper presents a method for safe and efficient RL using disturbance observers (DOBs) and control barrier functions (CBFs). Unlike most existing safe RL methods that deal with hard state constraints, our method does not involve model learning, and leverages DOBs to accurately estimate the pointwise value of the uncertainty, which is then incorporated into a robust CBF condition to generate safe actions. The DOB-based CBF can be used as a safety filter with model-free RL algorithms by minimally modifying the actions of an RL agent whenever necessary to ensure safety throughout the learning process. Simulation results on a unicycle and a 2D quadrotor demonstrate that the proposed method outperforms a state-of-the-art safe RL algorithm using CBFs and Gaussian processes-based model learning, in terms of safety violation rate, and sample and computational efficiency. 
    more » « less
  3. Safe reinforcement learning (RL) with assured satisfaction of hard state constraints during training has recently received a lot of attention. Safety filters, e.g., based on control barrier functions (CBFs), provide a promising way for safe RL via modifying the unsafe actions of an RL agent on the fly. Existing safety filter-based approaches typically involve learning of uncertain dynamics and quantifying the learned model error, which leads to conservative filters before a large amount of data is collected to learn a good model, thereby preventing efficient exploration. This paper presents a method for safe and efficient RL using disturbance observers (DOBs) and control barrier functions (CBFs). Unlike most existing safe RL methods that deal with hard state constraints, our method does not involve model learning, and leverages DOBs to accurately estimate the pointwise value of the uncertainty, which is then incorporated into a robust CBF condition to generate safe actions. The DOB-based CBF can be used as a safety filter with model-free RL algorithms by minimally modifying the actions of an RL agent whenever necessary to ensure safety throughout the learning process. Simulation results on a unicycle and a 2D quadrotor demonstrate that the proposed method outperforms a state-of-the-art safe RL algorithm using CBFs and Gaussian processes-based model learning, in terms of safety violation rate, and sample and computational efficiency. 
    more » « less
  4. Dang, Thao; Stolz, Volker (Ed.)
    We present Barrier-based Simplex (Bb-Simplex), a new, provably correct design for runtime assurance of continuous dynamical systems. Bb-Simplex is centered around the Simplex Control Architecture, which consists of a high-performance advanced controller which is not guaranteed to maintain safety of the plant, a verified-safe baseline controller, and a decision module that switches control of the plant between the two controllers to ensure safety without sacrificing performance. In Bb-Simplex, Barrier certificates are used to prove that the baseline controller ensures safety. Furthermore, Bb-Simplex features a new automated method for deriving, from the barrier certificate, the conditions for switching between the controllers. Our method is based on the Taylor expansion of the barrier certificate and yields computationally inexpensive switching conditions. We consider a significant application of Bb-Simplex to a microgrid featuring an advanced controller in the form of a neural network trained using reinforcement learning. The microgrid is modeled in RTDS, an industry-standard high-fidelity, real-time power systems simulator. Our results demonstrate that Bb-Simplex can automatically derive switching conditions for complex systems, the switching conditions are not overly conservative, and Bb-Simplex ensures safety even in the presence of adversarial attacks on the neural controller. 
    more » « less
  5. Control barrier functions are mathematical constructs used to guarantee safety for robotic systems. When integrated as constraints in a quadratic programming optimization problem, instantaneous control synthesis with real-time performance demands can be achieved for robotics applications. Prevailing use has assumed full knowledge of the safety barrier functions, however there are cases where the safe regions must be estimated online from sensor measurements. In these cases, the corresponding barrier function must be synthesized online. This paper describes a learning framework for estimating control barrier functions from sensor data. Doing so affords system operation in unknown state space regions without compromising safety. Here, a support vector machine classifier provides the barrier function specification as determined by sets of safe and unsafe states obtained from sensor measurements. Theoretical safety guarantees are provided. Experimental ROS-based simulation results for an omnidirectional robot equipped with LiDAR demonstrate safe operation. 
    more » « less