- PAR ID:
- 10413118
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Nature Materials
- Volume:
- 22
- Issue:
- 5
- ISSN:
- 1476-1122
- Page Range / eLocation ID:
- 591 to 598
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Spin Hall oscillators (SHOs) based on bilayers of a ferromagnet (FM) and a non-magnetic heavy metal (HM) are electrically tunable nanoscale microwave signal generators. Achieving high output power in SHOs requires driving large-amplitude magnetization dynamics by a direct spin Hall current. Here we present an SHO engineered to have easy-plane magnetic anisotropy oriented normal to the bilayer plane, enabling large-amplitude easy-plane dynamics driven by spin Hall current. Our experiments and micromagnetic simulations demonstrate that the easy-plane anisotropy can be achieved by tuning the magnetic shape anisotropy and perpendicular magnetic anisotropy in a nanowire SHO, leading to a significant enhancement of the generated microwave power. The easy-plane SHO experimentally demonstrated here is an ideal candidate for realization of a spintronic spiking neuron. Our results provide an approach to design of high-power SHOs for wireless communications, neuromorphic computing, and microwave assisted magnetic recording.
-
Abstract We study projection-enabled enhancement of asymmetric optical responses of plasmonic metasurfaces for photon-spin control of their far field scattering. Such a process occurs by detecting the light scattered by arrays of asymmetric U-shaped nanoantennas along their planes (in-plane scattering). The nanoantennas are considered to have relatively long bases and two unequal arms. Therefore, as their view angles along the planes of the arrays are changed, they offer an extensive range of shape and size projections, providing a wide control over the contributions of plasmonic near fields and multipolar resonances to the far field scattering of the arrays. We show that this increases the degree of the asymmetric spin-polarization responses of the arrays to circularly polarized light, offering a large amount of chirality. In particular, our results show the in-plane scattering of such metasurfaces can support opposite handedness, offering the possibility of photon spin-dependent directional control of energy routing.