We propose and evaluate a learning-based framework to address multi-agent resource allocation in coupled wireless systems. In particular we consider, multiple agents (e.g., base stations, access points, etc.) that choose amongst a set of resource allocation options towards achieving their own performance objective /requirements, and where the performance observed at each agent is further coupled with the actions chosen by the other agents, e.g., through interference, channel leakage, etc. The challenge is to find the best collective action. To that end we propose a Multi-Armed Bandit (MAB) framework wherein the best actions (aka arms) are adaptively learned through online reward feedback. Our focus is on systems which are "weakly-coupled" wherein the best arm of each agent is invariant to others' arm selection the majority of the time - this majority structure enables one to develop light weight efficient algorithms. This structure is commonly found in many wireless settings such as channel selection and power control. We develop a bandit algorithm based on the Track-and-Stop strategy, which shows a logarithmic regret with respect to a genie. Finally through simulation, we exhibit the potential use of our model and algorithm in several wireless application scenarios.
more »
« less
Covert Best Arm Identification of Stochastic Bandits
We study the covert best arm identification problem in which an agent tries to identify the best arm while escaping detection from an adversary. Specifically, the agent should identify the best arm of the bandit with accuracy higher than a predefined requirement as soon as possible and, simultaneously, the adversary’s observations induced by pulling effective arms should remain indistinguishable from the observations obtained when no effective arm is pulled. Our main result is the characterization of the exponent γ, which captures the asymptotic exponential decrease of the confidence level with the square-root of the averaged stopping time.
more »
« less
- Award ID(s):
- 1955401
- PAR ID:
- 10413180
- Date Published:
- Journal Name:
- Proc. of IEEE International Symposium on Information Theory
- Page Range / eLocation ID:
- 324 to 329
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the problem of identifying the best action in a sequential decision-making setting when the reward distributions of the arms exhibit a non-trivial dependence structure, which is governed by the underlying causal model of the domain where the agent is deployed. In this setting, playing an arm corresponds to intervening on a set of variables and setting them to specific values. In this paper, we show that whenever the underlying causal model is not taken into account during the decision-making process, the standard strategies of simultaneously intervening on all variables or on all the subsets of the variables may, in general, lead to suboptimal policies, regardless of the number of interventions performed by the agent in the environment. We formally acknowledge this phenomenon and investigate structural properties implied by the underlying causal model, which lead to a complete characterization of the relationships between the arms’ distributions. We leverage this characterization to build a new algorithm that takes as input a causal structure and finds a minimal, sound, and complete set of qualified arms that an agent should play to maximize its expected reward. We empirically demonstrate that the new strategy learns an optimal policy and leads to orders of magnitude faster convergence rates when compared with its causal-insensitive counterparts.more » « less
-
We investigate the problem of batched best arm identification in multi-armed bandits, where we aim to identify the best arm from a set of n arms while minimizing both the number of samples and batches. We introduce an algorithm that achieves near-optimal sample complexity and features an instance-sensitive batch complexity, which breaks the log(1/Δ_2) barrier. The main contribution of our algorithm is a novel sample allocation scheme that effectively balances exploration and exploitation for batch sizes. Experimental results indicate that our approach is more batch-efficient across various setups. We also extend this framework to the problem of batched best arm identification in linear bandits and achieve similar improvements.more » « less
-
We propose a new problem setting to study the sequential interactions between a recommender system and a user. Instead of assuming the user is omniscient, static, and explicit, as the classical practice does, we sketch a more realistic user behavior model, under which the user: 1) rejects recommendations if they are clearly worse than others; 2) updates her utility estimation based on rewards from her accepted recommendations; 3) withholds realized rewards from the system. We formulate the interactions between the system and such an explorative user in a K-armed bandit framework and study the problem of learning the optimal recommendation on the system side. We show that efficient system learning is still possible but is more difficult. In particular, the system can identify the best arm with probability at least 1-delta within O(1/delta) interactions, and we prove this is tight. Our finding contrasts the result for the problem of best arm identification with fixed confidence, in which the best arm can be identified with probability 1-delta within O(log(1/delta)) interactions. This gap illustrates the inevitable cost the system has to pay when it learns from an explorative user's revealed preferences on its recommendations rather than from the realized rewards.more » « less
-
We study a hinted heterogeneous multi-agent multi-armed bandits problem (HMA2B), where agents can query low-cost observations (hints) in addition to pulling arms. In this framework, each of the M agents has a unique reward distribution over K arms, and in T rounds, they can observe the reward of the arm they pull only if no other agent pulls that arm. The goal is to maximize the total utility by querying the minimal necessary hints without pulling arms, achieving time-independent regret. We study HMA2B in both centralized and decentralized setups. Our main centralized algorithm, GP-HCLA, which is an extension of HCLA, uses a central decision-maker for arm-pulling and hint queries, achieving O(M^4 K) regret with O(M K log T) adaptive hints. In decentralized setups, we propose two algorithms, HD-ETC and EBHD-ETC, that allow agents to choose actions independently through collision-based communication and query hints uniformly until stopping, yielding O(M^3 K^2) regret with O(M^3 K log T) hints, where the former requires knowledge of the minimum gap and the latter does not. Finally, we establish lower bounds to prove the optimality of our results and verify them through numerical simulations.more » « less