The need for secure and efficient communication between connected devices continues to grow in healthcare systems within smart cities. Secure communication of healthcare data in Internet of Things (IoT) systems is critical to ensure patient privacy and data integrity. Problems with healthcare communication, like data breaches, integrity issues, scalability issues, and cyber threats, make it harder for people to trust doctors, cause costs to rise, stop people from using new technology, and put private data at risk. So, this paper presents a blockchain-based hybrid method for sending secure healthcare data that combines IoT systems with blockchain technology and high-tech encryption techniques like elliptic curve cryptography (ECC). The proposed method uses the public key of a smart contract to encrypt private data to protect its privacy. It also uses cryptographic hashing and digital signatures to make sure that the data is correct and real. The framework stores metadata (e.g., hashes and signatures) on-chain, and large data uses off-chain storage like IPFS to reduce costs and improve scalability. It also incorporates a mechanism to authenticate IoT devices and enable secure communication across heterogeneous networks. Moreover, this work bridges gaps in existing solutions by providing an end-to-end secure communication system for healthcare applications. It provides strong data security and efficient storage for a reliable and scalable way to handle healthcare data safely in IoT ecosystems.
more »
« less
SecIoTComm: An Actor-Based Model and Framework for Secure IoT Communication
Internet of Things (IoT) ecosystems are becoming increasingly ubiquitous and heterogeneous, adding extra layers of complexity to secure communication and resource allocation. IoT computing resources are often located at the network edge and distributed across many heterogeneous sensors, actuators, and controller devices. This makes it challenging to provide the proper security mechanisms to IoT ecosystems in terms of manageability and maintainability. In an IoT ecosystem, computational resources are naturally distributed and shareable among their constituency, which creates an opportunity to distribute heavy tasks to them. However, resource allocation in IoT requires secure and complex communication and coordination mechanisms, which existing ones do not adequately support. In this paper, we present Secure Actor-based Model for IoT Communication (SecIoTComm), a model for representing secure IoT communication. SecIoTComm aims to represent secure IoT communication properties and design and implement novel mechanisms to improve their programmability and performance. SecIoTComm separates the communication and computation concerns, achieving design modularity in building IoT ecosystems. First, this paper presents the syntax and operational semantics of SecIoTComm. Then, we present an IoT framework implementing the key concepts of the model. Finally, we evaluate the developed framework using various performance and scalability metrics.
more »
« less
- Award ID(s):
- 2011330
- PAR ID:
- 10413403
- Date Published:
- Journal Name:
- Sensors
- Volume:
- 22
- Issue:
- 19
- ISSN:
- 1424-8220
- Page Range / eLocation ID:
- 7313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The study of generative models is a promising branch of deep learning techniques, which has been successfully applied to different scenarios, such as Artificial Intelligence and the Internet of Things. While in most of the existing works, the generative models are realized as a centralized structure, raising the threats of security and privacy and the overburden of communication costs. Rare efforts have been committed to investigating distributed generative models, especially when the training data comes from multiple heterogeneous sources under realistic IoT settings. In this paper, to handle this challenging problem, we design a federated generative model framework that can learn a powerful generator for the hierarchical IoT systems. Particularly, our generative model framework can solve the problem of distributed data generation on multi-source heterogeneous data in two scenarios, i.e., feature related scenario and label related scenario. In addition, in our federated generative models, we develop a synchronous and an asynchronous updating methods to satisfy different application requirements. Extensive experiments on a simulated dataset and multiple real datasets are conducted to evaluate the data generation performance of our proposed generative models through comparison with the state-of-the-arts.more » « less
-
Recent advancements in energy-harvesting techniques provide an alternative to batteries for resource-constrained IoT devices and lead to a new computing paradigm, the intermittent computing model. In this model, a software module continues its execution from where it left off when an energy shortage occurred. Enforcing security of an intermittent software module is challenging because its power-off state has to be protected from a malicious adversary in addition to its power-on state, while the security mechanisms put in place must have a low overhead on the performance, resource consumption, and cost of a device. In this paper, we propose SIA (Secure Intermittent Architecture), a security architecture for resource-constrained IoT devices. SIA leverages low-cost security features available in commercial off-the-shelf microcontrollers to protect both the power-on and power-off state of an intermittent software module. Therefore, SIA enables a host of secure intermittent computing applications such as self-attestation, remote attestation, and secure communication. Moreover, our architecture provides confidentiality and integrity guarantees to an intermittent computing module at no cost compared to previous approaches in the literature that impose significant overheads. The salient characteristic of SIA is that it does not require any hardware modifications, and hence, it can be directly applied to existing IoT devices. We implemented and evaluated SIA on a resource-constrained IoT device based on an MSP430 processor. Besides being secure, SIA is simple and efficient. We confirm the feasibility of SIA for resource-constrained IoT devices with experimental results of several intermittent computing applications. Our prototype implementation outperforms by two to three orders of magnitude the secure intermittent computing solution of Suslowicz et al. presented at IGSC 2018.more » « less
-
Recent advancements in energy-harvesting techniques provide an alternative to batteries for resource constrained IoT devices and lead to a new computing paradigm, the intermittent computing model. In this model, a software module continues its execution from where it left off when an energy shortage occurred. Enforcing security of an intermittent software module is challenging because its power-off state has to be protected from a malicious adversary in addition to its power-on state, while the security mechanisms put in place must have a low overhead on the performance, resource consumption, and cost of a device. In this paper, we propose SIA (Secure Intermittent Architecture), a security architecture for resource-constrained IoT devices. SIA leverages low-cost security features available in commercial off-the-shelf microcontrollers to protect both the power-on and power-off state of an intermittent software module. Therefore, SIA enables a host of secure intermittent computing applications such as self-attestation, remote attestation, and secure communication. Moreover, our architecture provides confidentiality and integrity guarantees to an intermittent computing module at no cost compared to previous approaches in the literature that impose significant overheads. The salient characteristic of SIA is that it does not require any hardware modifications, and hence, it can be directly applied to existing IoT devices. We implemented and evaluated SIA on a resource-constrained IoT device based on an MSP430 processor. Besides being secure, SIA is simple and efficient. We confirm the feasibility of SIA for resource-constrained IoT devices with experimental results of several intermittent computing applications. Our prototype implementation outperforms by two to three orders of magnitude the secure intermittent computing solution of Suslowicz et al. presented at IGSC 2018.more » « less
-
With sensors becoming increasingly ubiquitous, there is tremendous potential for Internet of Things (IoT) services that can take advantage of the data collected by these sensors. Although there are a growing number of technologies focused on IoT services, there is relatively limited foundational work on them. This is partly because of the lack of precise understanding, specification, and analysis of such services, and, consequently, there is limited platform support for programming them. In this paper, we present a formal model for understanding and enabling reasoning about distributed IoT services. The paper first studies the key properties of the IoT services profoundly, and then develops an approach for fine-grained resource coordination and control for such services. The resource model identifies the core mechanisms underlying IoT services, informing design and implementation decisions about them if implemented over a middleware or a platform. We took a multi-agent systems approach to represent IoT services, broadly founded in the actors model of concurrency. Actor-based services can be built by composing simpler services. Furthermore, we created a proximity model to represent an appropriate notion of IoT proximity. This model represents the dynamically evolving relationship between the service’s sensing and acting capabilities and the environments in which these capabilities are exercised. The paper also presents the design of a runtime environment to support the implementation of IoT services. Key mechanisms required by such services will be implemented in a distributed middleware.more » « less
An official website of the United States government

