Abstract We consider the directed mean curvature flow on the plane in a weak Gaussian random environment. We prove that, when started from a sufficiently flat initial condition, a rescaled and recentred solution converges to the Cole–Hopf solution of the KPZ equation. This result follows from the analysis of a more general system of nonlinear SPDEs driven by inhomogeneous noises, using the theory of regularity structures. However, due to inhomogeneity of the noise, the “black box” result developed in the series of works cannot be applied directly and requires significant extension to infinite‐dimensional regularity structures. Analysis of this general system of SPDEs gives two more interesting results. First, we prove that the solution of the quenched KPZ equation with a very strong force also converges to the Cole–Hopf solution of the KPZ equation. Second, we show that a properly rescaled and renormalised quenched Edwards–Wilkinson model in any dimension converges to the stochastic heat equation.
more »
« less
Long-time behaviour for a nonlocal model from directed polymers
Abstract We consider the long time behaviour of solutions to a nonlocal reaction diffusion equation that arises in the study of directed polymers in a random environment. The model is characterized by convolution with a kernel R and an L 2 inner product. In one spatial dimension, we extend a previous result of the authors (arXiv: 2002.02799 ), where only the case R = δ was considered; in particular, we show that solutions spread according to a 2 / 3 power law consistent with the KPZ scaling conjectured for directed polymers. In the special case when R = δ , we find the exact profile of the solution in the rescaled coordinates. We also consider the behaviour in higher dimensions. When the dimension is three or larger, we show that the long-time behaviour is the same as the heat equation in the sense that the solution converges to a standard Gaussian. In contrast, when the dimension is two, we construct a non-Gaussian self-similar solution.
more »
« less
- PAR ID:
- 10413404
- Date Published:
- Journal Name:
- Nonlinearity
- Volume:
- 36
- Issue:
- 2
- ISSN:
- 0951-7715
- Page Range / eLocation ID:
- 902 to 954
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, we consider weak solutions of the Euler–Lagrange equation to a variational energy functional modeling the geometrically nonlinear Cosserat micropolar elasticity of continua in dimension three, which is a system coupling between the Poisson equation and the equation of $$p$$-harmonic maps (#2\le p\le 3$$). We show that if a weak solution is stationary, then its singular set is discrete for $2<3$ and has zero one-dimensional Hausdorff measure for $p=2$. If, in addition, it is a stable-stationary weak solution, then it is regular everywhere when $$p\in [2, 32/15]$$.more » « less
-
We study the focusing NLS equation in $$R\mathbb{R}^N$$ in the mass-supercritical and energy-subcritical (or intercritical ) regime, with $H^1$ data at the mass-energy threshold $$\mathcal{ME}(u_0)=\mathcal{ME}(Q)$$, where Q is the ground state. Previously, Duyckaerts–Merle studied the behavior of threshold solutions in the $H^1$-critical case, in dimensions $N = 3, 4, 5$, later generalized by Li–Zhang for higher dimensions. In the intercritical case, Duyckaerts–Roudenko studied the threshold problem for the 3d cubic NLS equation. In this paper, we generalize the results of Duyckaerts–Roudenko for any dimension and any power of the nonlinearity for the entire intercritical range. We show the existence of special solutions, $$Q^\pm$$, besides the standing wave $$e^{it}Q$$, which exponentially approach the standing wave in the positive time direction, but differ in its behavior for negative time. We classify solutions at the threshold level, showing either blow-up occurs in finite (positive and negative) time, or scattering in both time directions, or the solution is equal to one of the three special solutions above, up to symmetries. Our proof extends to the $H^1$-critical case, thus, giving an alternative proof of the Li–Zhang result and unifying the critical and intercritical cases. These results are obtained by studying the linearized equation around the standing wave and some tailored approximate solutions to the NLS equation. We establish important decay properties of functions associated to the spectrum of the linearized Schrödinger operator, which, in combination with modulational stability and coercivity for the linearized operator on special subspaces, allows us to use a fixed-point argument to show the existence of special solutions. Finally, we prove the uniqueness by studying exponentially decaying solutions to a sequence of linearized equations.more » « less
-
null (Ed.)Abstract Let $$u_{k}$$ u k be a solution of the Helmholtz equation with the wave number k , $$\varDelta u_{k}+k^{2} u_{k}=0$$ Δ u k + k 2 u k = 0 , on (a small ball in) either $${\mathbb {R}}^{n}$$ R n , $${\mathbb {S}}^{n}$$ S n , or $${\mathbb {H}}^{n}$$ H n . For a fixed point p , we define $$M_{u_{k}}(r)=\max _{d(x,p)\le r}|u_{k}(x)|.$$ M u k ( r ) = max d ( x , p ) ≤ r | u k ( x ) | . The following three ball inequality $$M_{u_{k}}(2r)\le C(k,r,\alpha )M_{u_{k}}(r)^{\alpha }M_{u_{k}}(4r)^{1-\alpha }$$ M u k ( 2 r ) ≤ C ( k , r , α ) M u k ( r ) α M u k ( 4 r ) 1 - α is well known, it holds for some $$\alpha \in (0,1)$$ α ∈ ( 0 , 1 ) and $$C(k,r,\alpha )>0$$ C ( k , r , α ) > 0 independent of $$u_{k}$$ u k . We show that the constant $$C(k,r,\alpha )$$ C ( k , r , α ) grows exponentially in k (when r is fixed and small). We also compare our result with the increased stability for solutions of the Cauchy problem for the Helmholtz equation on Riemannian manifolds.more » « less
-
Abstract The method of choice for integrating the time-dependent Fokker–Planck equation (FPE) in high-dimension is to generate samples from the solution via integration of the associated stochastic differential equation (SDE). Here, we study an alternative scheme based on integrating an ordinary differential equation that describes the flow of probability. Acting as a transport map, this equation deterministically pushes samples from the initial density onto samples from the solution at any later time. Unlike integration of the stochastic dynamics, the method has the advantage of giving direct access to quantities that are challenging to estimate from trajectories alone, such as the probability current, the density itself, and its entropy. The probability flow equation depends on the gradient of the logarithm of the solution (its ‘score’), and so isa-prioriunknown. To resolve this dependence, we model the score with a deep neural network that is learned on-the-fly by propagating a set of samples according to the instantaneous probability current. We show theoretically that the proposed approach controls the Kullback–Leibler (KL) divergence from the learned solution to the target, while learning on external samples from the SDE does not control either direction of the KL divergence. Empirically, we consider several high-dimensional FPEs from the physics of interacting particle systems. We find that the method accurately matches analytical solutions when they are available as well as moments computed via Monte-Carlo when they are not. Moreover, the method offers compelling predictions for the global entropy production rate that out-perform those obtained from learning on stochastic trajectories, and can effectively capture non-equilibrium steady-state probability currents over long time intervals.more » « less
An official website of the United States government

