skip to main content


Title: An increase in marine heatwaves without significant changes in surface ocean temperature variability
Abstract Marine heatwaves (MHWs)—extremely warm, persistent sea surface temperature (SST) anomalies causing substantial ecological and economic consequences—have increased worldwide in recent decades. Concurrent increases in global temperatures suggest that climate change impacted MHW occurrences, beyond random changes arising from natural internal variability. Moreover, the long-term SST warming trend was not constant but instead had more rapid warming in recent decades. Here we show that this nonlinear trend can—on its own—appear to increase SST variance and hence MHW frequency. Using a Linear Inverse Model to separate climate change contributions to SST means and internal variability, both in observations and CMIP6 historical simulations, we find that most MHW increases resulted from regional mean climate trends that alone increased the probability of SSTs exceeding a MHW threshold. Our results suggest the need to carefully attribute global warming-induced changes in climate extremes, which may not always reflect underlying changes in variability.  more » « less
Award ID(s):
2306046 1637632
NSF-PAR ID:
10413428
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The trends over recent decades in tropical Pacific sea surface and upper ocean temperature are examined in observations-based products, an ocean reanalysis and the latest models from the Coupled Model Intercomparison Project phase six and the Multimodel Large Ensembles Archive. Comparison is made using three metrics of sea surface temperature (SST) trend—the east–west and north–south SST gradients and a pattern correlation for the equatorial region—as well as change in thermocline depth. It is shown that the latest generation of models persist in not reproducing the observations-based SST trends as a response to radiative forcing and that the latter are at the far edge or beyond the range of modeled internal variability. The observed combination of thermocline shoaling and lack of warming in the equatorial cold tongue upwelling region is similarly at the extreme limit of modeled behavior. The persistence over the last century and a half of the observed trend toward an enhanced east–west SST gradient and, in four of five observed gridded datasets, to an enhanced equatorial north–south SST gradient, is also at the limit of model behavior. It is concluded that it is extremely unlikely that the observed trends are consistent with modeled internal variability. Instead, the results support the argument that the observed trends are a response to radiative forcing in which an enhanced east–west SST gradient and thermocline shoaling are key and that the latest generation of climate models continue to be unable to simulate this aspect of climate change.

     
    more » « less
  2. South American (SA) societies are highly vulnerable to droughts and pluvials, but lack of long-term climate observations severely limits our understanding of the global processes driving climatic variability in the region. The number and quality of SA climate-sensitive tree ring chronologies have significantly increased in recent decades, now providing a robust network of 286 records for characterizing hydroclimate variability since 1400 CE. We combine this network with a self-calibrated Palmer Drought Severity Index (scPDSI) dataset to derive the South American Drought Atlas (SADA) over the continent south of 12°S. The gridded annual reconstruction of austral summer scPDSI is the most spatially complete estimate of SA hydroclimate to date, and well matches past historical dry/wet events. Relating the SADA to the Australia–New Zealand Drought Atlas, sea surface temperatures and atmospheric pressure fields, we determine that the El Niño–Southern Oscillation (ENSO) and the Southern Annular Mode (SAM) are strongly associated with spatially extended droughts and pluvials over the SADA domain during the past several centuries. SADA also exhibits more extended severe droughts and extreme pluvials since the mid-20th century. Extensive droughts are consistent with the observed 20th-century trend toward positive SAM anomalies concomitant with the weakening of midlatitude Westerlies, while low-level moisture transport intensified by global warming has favored extreme rainfall across the subtropics. The SADA thus provides a long-term context for observed hydroclimatic changes and for 21st-century Intergovernmental Panel on Climate Change (IPCC) projections that suggest SA will experience more frequent/severe droughts and rainfall events as a consequence of increasing greenhouse gas emissions. 
    more » « less
  3. Abstract

    Global radiative feedbacks have been found to vary in global climate model (GCM) simulations. Atmospheric GCMs (AGCMs) driven with historical patterns of sea surface temperatures (SSTs) and sea ice concentrations produce radiative feedbacks that trend toward more negative values, implying low climate sensitivity, over recent decades. Freely evolving coupled GCMs driven by increasing CO2 produce radiative feedbacks that trend toward more positive values, implying increasing climate sensitivity, in the future. While this time variation in feedbacks has been linked to evolving SST patterns, the role of particular regions has not been quantified. Here, a Green’s function is derived from a suite of simulations within an AGCM (NCAR’s CAM4), allowing an attribution of global feedback changes to surface warming in each region. The results highlight the radiative response to surface warming in ascent regions of the western tropical Pacific as the dominant control on global radiative feedback changes. Historical warming from the 1950s to 2000s preferentially occurred in the western Pacific, yielding a strong global outgoing radiative response at the top of the atmosphere (TOA) and thus a strongly negative global feedback. Long-term warming in coupled GCMs occurs preferentially in tropical descent regions and in high latitudes, where surface warming yields small global TOA radiation change but large global surface air temperature change, and thus a less-negative global feedback. These results illuminate the importance of determining mechanisms of warm pool warming for understanding how feedbacks have varied historically and will evolve in the future.

     
    more » « less
  4. Abstract

    In recent years, the Southern Ocean has experienced unprecedented surface warming and sea ice loss—a stark reversal of the sea ice expansion and surface cooling that prevailed over the preceding decades. Here, we examine the mechanisms that led to the abrupt circumpolar surface warming events that occurred in late 2016 and 2019 and assess the role of internal climate variability. A mixed layer heat budget analysis reveals that these recent circumpolar surface warming events were triggered by a weakening of the circumpolar westerlies, which decreased northward Ekman transport and accelerated the seasonal shoaling of the mixed layer. We emphasize the underappreciated effect of the latter mechanism, which played a dominant role and amplified the warming effect of air–sea heat fluxes during months of peak solar insolation. An examination of the CESM1 large ensemble demonstrates that these recent circumpolar warming events are consistent with the internal variability associated with the Southern Annular Mode (SAM), whereby negative SAM in austral spring favors shallower mixed layers and anomalously high summertime SST. A key insight from this analysis is that the seasonal phasing of springtime mixed layer depth shoaling is an important contributor to summertime SST variability in the Southern Ocean. Thus, future Southern Ocean summertime SST extremes will depend on the coevolution of mixed layer depth and surface wind variability.

    Significance Statement

    This study examines how reductions in the strength of the circumpolar westerlies can produce abrupt and extreme surface warming across the Southern Ocean. A key insight is that the mixed layer temperature is most sensitive to surface wind perturbations in late austral spring, when the regional mixed layer depth and solar insolation approach their respective seasonal minimum and maximum. This heightened surface temperature response to surface wind variability was realized during the austral spring of 2016 and 2019, when a dramatic weakening of the circumpolar westerlies triggered unprecedented warming across the Southern Ocean. In both cases, the anomalously weak circumpolar winds reduced the northward Ekman transport of cool subpolar waters and caused the mixed layer to shoal more rapidly in the spring, with the latter mechanism being more dominant. Using results from an ensemble of coupled climate simulations, we demonstrate that the 2016 and 2019 Southern Ocean warming events are consistent with the internal variability associated with the Southern Annular Mode (SAM). These results suggest that future Southern Ocean surface warming extremes will depend on both the evolution of regional mixed layer depths and interannual wind variability.

     
    more » « less
  5. Abstract

    General Circulation Model (GCM) simulations with prescribed observed sea surface temperature (SST) over the historical period show systematic global shortwave cloud radiative effect (SWCRE) variations uncorrelated with global surface temperature (known as “pattern effect”). Here, we show that a single parameter that quantifies the difference in SSTs between regions of tropical deep convection and the tropical or global average (Δconv) captures the time‐varying “pattern effect” in the simulations using the PCMDI/AMIPII SST recommended for CMIP6. In particular, a large positive trend in the 1980s–1990s in Δconvexplains the change of sign to a strongly negative SWCRE feedback since the late 1970s. In these decades, the regions of deep convection warm about +50% more than the tropical average. Such an amplification is rarely observed in forced coupled atmosphere‐ocean GCM simulations, where the amplified warming is typically about +10%. During the post 2000 global warming hiatus Δconvshows little change, and the more recent period of resumed global warming is too short to robustly detect trends. In the prescribed SST simulations, Δconvis forced by the SST difference between warmer and colder regions. An index thereof (SST#) evaluated for six SST reconstructions shows similar trends for the satellite era, but the difference between the pre‐ and the satellite era is substantially larger in the PCMDI/AMIPII SSTs than in the other reconstructions. Quantification of the cloud feedback depends critically on small changes in the shape of the SST probability density distribution. These sensitivities underscore how essential highly accurate, persistent, and stable global climate records are to determine the cloud feedback.

     
    more » « less