skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Opers and Non-Abelian Hodge: Numerical Studies
We present numerical experiments that test the predictions of a conjecture of Gaiotto–Moore–Neitzke and Gaiotto concerning the monodromy map for opers, the non-Abelian Hodge correspondence, and the restriction of the hyperkähler L2 metric to the Hitchin section. These experiments are conducted in the setting of polynomial holomorphic differentials on the complex plane, where the predictions take the form of conjectural formulas for the Stokes data and the metric tensor. Overall, the results of our experiments support the conjecture.  more » « less
Award ID(s):
1709877
PAR ID:
10413444
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Experimental Mathematics
ISSN:
1058-6458
Page Range / eLocation ID:
1 to 42
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Given a Kähler fiber space p : X → Y {p:X\to Y} whose generic fiber is of general type, we prove that the fiberwise singular Kähler–Einstein metric inducesa semipositively curved metric on the relative canonical bundle K X / Y {K_{X/Y}} of p . We also propose a conjectural generalization of this result for relativetwisted Kähler–Einstein metrics. Then we show that our conjecture holds trueif the Lelong numbers of the twisting current are zero. Finally, we explain the relevance of our conjecture for the study of fiberwise Song–Tian metrics (which represent the analogue of KE metrics for fiber spaces whose generic fiber has positive but not necessarily maximal Kodaira dimension). 
    more » « less
  2. Abstract The Theorem of Bonnet–Myers implies that manifolds with topology do not admit a metric of positive Ricci curvature, while the resolution of Geroch's conjecture implies that the torus does not admit a metric of positive scalar curvature. In this work we introduce a new notion of curvature interpolating between Ricci and scalar curvature (so‐calledm‐intermediate curvature), and use stable weighted slicings to show that for and the manifolds do not admit a metric of positivem‐intermediate curvature. 
    more » « less
  3. A famous conjecture of Hopf states that $$\mathbb{S}^{2}\times \mathbb{S}^{2}$$ does not admit a Riemannian metric with positive sectional curvature. In this article, we prove that no manifold product $$N\times N$$ can carry a metric of positive sectional curvature admitting a certain degree of torus symmetry. 
    more » « less
  4. null (Ed.)
    Abstract We give an affirmative solution to a conjecture of Cheng proposed in 1979which asserts that the Bergman metric of a smoothly bounded stronglypseudoconvex domain in {\mathbb{C}^{n},n\geq 2} , is Kähler–Einsteinif and only if the domain is biholomorphic to the ball. We establisha version of the classical Kerner theorem for Stein spaces withisolated singularities which has an immediate application toconstruct a hyperbolic metric over a Stein space with a sphericalboundary. 
    more » « less
  5. Abstract We define a relative version of the Turaev–Viro invariants for an ideally triangulated compact 3‐manifold with nonempty boundary and a coloring on the edges, generalizing the Turaev–Viro invariants [36] of the manifold. We also propose the volume conjecture for these invariants whose asymptotic behavior is related to the volume of the manifold in the hyperbolic polyhedral metric [22, 23] with singular locus of the edges and cone angles determined by the coloring, and prove the conjecture in the case that the cone angles are sufficiently small. This suggests an approach of solving the volume conjecture for the Turaev–Viro invariants proposed by Chen–Yang [8] for hyperbolic 3‐manifolds with totally geodesic boundary. 
    more » « less