On the Classification of Normal Stein Spaces and Finite Ball Quotients With Bergman–Einstein Metrics
null
(Ed.)
Abstract We study the Bergman metric of a finite ball quotient $$\mathbb{B}^n/\Gamma $$, where $$n \geq 2$$ and $$\Gamma \subseteq{\operatorname{Aut}}({\mathbb{B}}^n)$$ is a finite, fixed point free, abelian group. We prove that this metric is Kähler–Einstein if and only if $$\Gamma $$ is trivial, that is, when the ball quotient $$\mathbb{B}^n/\Gamma $$ is the unit ball $${\mathbb{B}}^n$$ itself. As a consequence, we characterize the unit ball among normal Stein spaces with isolated singularities and abelian fundamental groups in terms of the existence of a Bergman–Einstein metric.
more »
« less