This research paper introduces a unique system called ZORQ that is a combination of a game development frame- work and a gamification framework (GDGF). The ZORQ GDGF acts as a catalyst to help motivate students by increasing student engagement and success within undergraduate Computer Science (CS) education, regardless of student experience and background. The dynamic gamification elements utilized within the GDGF make it an attractive learning method for students. After col- laborative game space customization, ZORQ gameplay sees each student tasked with designing a ship movement philosophy and then implementing their own code to autonomously control the ship in an interstellar game space filled with supplies, obstacles, and enemy ships. The particulars of engagements between ships can vary greatly by semester, along with the resources/objects present in the game, depending on the collaborative customization and the independent ship strategies implemented. A preliminary Z O R Q trial was conducted over five years in an undergraduate Data Structures and Algorithms (DSA) course. The ZORQ trial is designed to fulfill the following objectives: 1) implement DSA concepts discussed within the course, 2) identify appropriate problem-solving approaches, 3) apply one or more solutions, 4) build depth with a coding language, 5) bridge the gap between limited concept assignments and large, multi-developer software systems by allowing students to build code within a larger architecture, 6) introduce students to version control, 7) illustrate the use of prior mathematics coursework in practical applications, and 8) introduce unit testing in software systems.In exit surveys, students expressed overwhelming satisfaction with this approach. More than 84% of the students surveyed found the system useful in their educational experience and saw benefit to inspecting a completed software project. 82% of the students found that Z O R Q increased software development com- prehension. 80% enjoyed using their own personal creativity in designing a ship controller, 76% found ZORQ helped them learn how to implement and use DSAs. 71% found the system engaging and found the system interaction to be clear and understandable. Observations of student performance in later courses suggest better student maturity and comprehension in preparation for proposing and implementing their own independent projects.
more »
« less
Assessing User Experiences with ZORQ: A Gamification Framework forComputer Science Education
ZORQ is a gamification software framework designed to increase student engagement within undergraduate Computer Science (CS) education. ZORQ is an attractive learning method that (1) utilizes numerous gamification elements, (2) provides a collaborative, game-development based learning approach, (3) offers an opportunity for students to explore a complex, real-world software development implementation, and (4) provides students with a high level of engagement with the system and a high level of social engagement in its collaborative customization. The usage of ZORQ was assessed using quantitative, qualitative and sentiment analyses in a Data Structures and Algorithms course over five years. The overwhelmingly positive results show that students were satisfied with their user experience and ZORQ was beneficial to their educational experience. By triangulating results from multiple analyses, this study adds to a deeper understanding of how gamification can improve learning and retention and provides a novel, robust, holistic methodology for evaluating user experiences.
more »
« less
- Award ID(s):
- 1750038
- PAR ID:
- 10413461
- Date Published:
- Journal Name:
- Hawaii International Conference on System Sciences (HICSS), 2023
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hilliger, I; Muñoz-Merino, P. J.; De Laet, T.; Ortega-Arranz, A.; Farrell, T. (Ed.)In designing learning technology, it is critical that the technology supports both learning and engagement of students. However, achieving both aspects in a single technology design is challenging. We report on the design and evaluation of Gwynnette, intelligent tutoring software for early algebra. Gwynnette was deliberately designed to enhance students’ algebra learning and engagement, integrating several playful interaction and gamification features such as drag-and-drop interactions, an alien character, and sound effects. A virtual classroom experiment with 60 students showed that the system significantly enhanced both engagement and conceptual learning in early algebra, compared to the older version of the same software. Log data analyses gave insights into how the design might have affected the out-comes. This study demonstrates that a deliberate design of learning technology can help students learn and engage well in an unpopular subject such as algebra, a challenging dual goal in designing learning technologies.more » « less
-
Hardware security is an emerging field with far-ranging impacts on the design and implementation of the devices we use in our everyday lives – from wearable and implantable medical devices to personal mobile devices, and even cloud devices powering the software services that drive our society forward. Practical, hands-on experience is vital to the training of students in this and other security-related fields. We are developing a new model for hardware security education using readily available, cost-efficient, off-the-shelf development boards, with hands-on experiments that offer new learning opportunities for students. Beyond this, we are experimenting with different pedagogical methods to improve student engagement. In particular, we aim to gamify a subset of the experiments and evaluate the impact on student engagement and learning. This work-in-progress paper describes our initial approach to the gamification of hardware security labs and reports on baseline results from our control study using a more traditional, non-gamified approach.more » « less
-
The increasing cyber threats to online systems have resulted in the need for a more inclusive approach to educating the broader population on preventative measures to reduce the impact of these threats. It is estimated that the cybercrime cost to the world will be $10.5 trillion annually by 2025. No longer can cybersecurity courses be specialized courses in university curricula, but some of these courses need to become core courses for all students. These courses should not only be tailored for university and college students but also be required to thread the curricula, starting in elementary schools. This paper describes our experiences conducting a collaborative cybersecurity project to increase access to undergraduate cybersecurity education. The project was funded by the NSF and Cyber Florida. The project was a collaboration between two Florida public universities. One university is a large urban Hispanic-Serving Institution. We describe how the Software Engineering and Programming Cyberlearning Environment (SEP-CyLE), in conjunction with other cybersecurity systems, was used to develop basic cybersecurity materials, labs, and activities for undergraduate students and instructors. SEP-CyLE motivates students to learn in an interactive environment where they can provide feedback to their peers while employing three learning and engagement strategies (LESs). These LESs include collaborative learning, gamification, and social interaction. We present the objectives of the project, describe how the objectives were met, briefly describe SEP-CyLE, and provide data showing students’ interactions with SEP-CyLE. The data retrieved from SEP-CyLE provides insight into how the learning environment was used, students’ performance on the learning objects, and the impact of the LESs on students’ overall performance in an introductory cybersecurity course.more » « less
-
Gamification in education presents a number of benefits that can theoretically facilitate higher engagement and motivation among students when learning complex, technical concepts. As an innovative, high-potential educational tool, many educators and researchers are attempting to implement more effective gamification into undergraduate coursework. Cyber Security Operations (CSO) education is no exception. CSO education traditionally requires comprehension of complex concepts requiring a high level of technical and abstract thinking. By properly applying gamification to complex CSO concepts, engagement in students should see an increase. While an increase is expected, no comprehensive study of CSO gamification applications (GA) has yet been undertaken to fully synthesize the use and outcomes of existing implementations. To better understand and explore gamification in CSO education, a deeper analysis of current gamification applications is needed. This research outlines and conducts a methodical, comprehensive literature review using the Systematic Mapping Study process to identify implemented and evaluated GAs in undergraduate CSO education. This research serves as both a comprehensive repository and synthesis of existing GAs in cybersecurity, and as a starting point for further CSO GA research. With such a review, future studies can be undertaken to better understand CSO GAs. A total of 74 papers were discovered which evaluated GAs undergraduate CSO education, through literature published between 2007 and June 2022. Some publications discussed multiple GAs, resulting in a total of 80 undergraduate CSO GAs listing at https://bit.ly/3S260GS. The study outlines each GA identified and provides a short overview of each GA. It also provides a summary of engagement-level characteristics currently exhibited in existing CSO education GAs and discusses common themes and findings discovered in the course of the study.more » « less
An official website of the United States government

