skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ZORQ: A Gamification Framework for Computer Science Education
This research paper introduces a unique system called ZORQ that is a combination of a game development frame- work and a gamification framework (GDGF). The ZORQ GDGF acts as a catalyst to help motivate students by increasing student engagement and success within undergraduate Computer Science (CS) education, regardless of student experience and background. The dynamic gamification elements utilized within the GDGF make it an attractive learning method for students. After col- laborative game space customization, ZORQ gameplay sees each student tasked with designing a ship movement philosophy and then implementing their own code to autonomously control the ship in an interstellar game space filled with supplies, obstacles, and enemy ships. The particulars of engagements between ships can vary greatly by semester, along with the resources/objects present in the game, depending on the collaborative customization and the independent ship strategies implemented. A preliminary Z O R Q trial was conducted over five years in an undergraduate Data Structures and Algorithms (DSA) course. The ZORQ trial is designed to fulfill the following objectives: 1) implement DSA concepts discussed within the course, 2) identify appropriate problem-solving approaches, 3) apply one or more solutions, 4) build depth with a coding language, 5) bridge the gap between limited concept assignments and large, multi-developer software systems by allowing students to build code within a larger architecture, 6) introduce students to version control, 7) illustrate the use of prior mathematics coursework in practical applications, and 8) introduce unit testing in software systems.In exit surveys, students expressed overwhelming satisfaction with this approach. More than 84% of the students surveyed found the system useful in their educational experience and saw benefit to inspecting a completed software project. 82% of the students found that Z O R Q increased software development com- prehension. 80% enjoyed using their own personal creativity in designing a ship controller, 76% found ZORQ helped them learn how to implement and use DSAs. 71% found the system engaging and found the system interaction to be clear and understandable. Observations of student performance in later courses suggest better student maturity and comprehension in preparation for proposing and implementing their own independent projects.  more » « less
Award ID(s):
1750038
PAR ID:
10413470
Author(s) / Creator(s):
Date Published:
Journal Name:
IEEE Frontiers in Education Conference (FIE)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ZORQ is a gamification software framework designed to increase student engagement within undergraduate Computer Science (CS) education. ZORQ is an attractive learning method that (1) utilizes numerous gamification elements, (2) provides a collaborative, game-development based learning approach, (3) offers an opportunity for students to explore a complex, real-world software development implementation, and (4) provides students with a high level of engagement with the system and a high level of social engagement in its collaborative customization. The usage of ZORQ was assessed using quantitative, qualitative and sentiment analyses in a Data Structures and Algorithms course over five years. The overwhelmingly positive results show that students were satisfied with their user experience and ZORQ was beneficial to their educational experience. By triangulating results from multiple analyses, this study adds to a deeper understanding of how gamification can improve learning and retention and provides a novel, robust, holistic methodology for evaluating user experiences. 
    more » « less
  2. null (Ed.)
    The pedagogical approach of Zone of Proximal Development (ZPD) is based on the belief that effective learning occurs when students are challenged just beyond the level they can do on their own. An expert teacher looking over the shoulder of a student would give just the right amount of hints; too much hinting gives away the solution which deprives the student of the productive struggle that is needed for learning new concepts. Alternatively, no hinting may leave the student frustrated to the point where they give up. A key challenge with online learning is how to provide the right level of hints as if an expert teacher were there. This paper describes the evolution of hints for spatial visualization training using a mobile app. Students sketch orthographic and isometric sketches, which are automatically graded by the app. When a student draws an assignment incorrectly, they are provided with the option of a hint or peeking at the solution. This paper discusses the development of the app feedback and how it has impacted student behavior in using the app. In a first implementation, some students who excessively peeked at the solution without trying very hard on the assignments, did not significantly improve their spatial visualization ability as measured by the standardized PSVT:R test. To address the over-use of peeking, gamification was added that rewarded students to try on their own before looking at a hint or peek. In this paper, we look at a classroom trial that used a version of the spatial visualization mobile app with gamification. In general, gamification increased the post PSVT:r test scores. However, there was also a partial negative effect that and we see instances where the gamification lead to student frustration and waste of time because they avoided using hints to maximize their gamification points. We realized that the encompassing the knowledge of an expert teacher in providing hints just when needed, is difficult to implement in an algorithm. Specific examples are presented along with proposed improvements to the in-app hints. The final paper will include data comparing results of a class in January 2018 that used the original hints, with a class in January 2019 that will use the newer hints. 
    more » « less
  3. Although many CS courses require extensive practice, a large number of students show low motivation for engaging in non-graded, self-directed learning activities. To address this problem, we developed OneUp – a highly configurable course gamification platform that enables instructors to tailor the gamification features to fit their preferences. This paper presents a case study of using OneUp to gamify a Data Structures course. The focus is on encouraging students’ self-study and better engagement with out-of-class online practicing. We describe the utilized game elements - badges, leaderboard, virtual currency, and learning dashboards, and provide a descriptive analysis of their use. The results of our evaluation show that this gamification intervention has been well received by the students, resulting in significantly increased student engagement and out-of-class practicing and in a reduced failing rate. 
    more » « less
  4. Educational video games can engage students in authentic STEM practices, which often involve visual representations. In particular, because most interactions within video games are mediated through visual representations, video games provide opportunities for students to experience disciplinary practices with visual representations. Prior research on learning with visual representations in non-game contexts suggests that visual representations may confuse students if they lack prerequisite representational-competencies. However, it is unclear how this research applies to game environments. To address this gap, we investigated the role of representational-competencies for students’ learning from video games. We first conducted a single-case study of a high-performing undergraduate student playing an astronomy game as an assignment in an astronomy course. We found that this student had difficulties making sense of the visual representations in the game. We interpret these difficulties as indicating a lack of representational-competencies. Further, these difficulties seemed to lead to the student’s inability to relate the game experiences to the content covered in his astronomy course. A second study investigated whether interventions that have proven successful in structured learning environments to support representational-competencies would enhance students’ learning from visual representations in the video game. We randomly assigned 45 students enrolled in an undergraduate course to two conditions. Students either received representational-competency support while playing the astronomy game or they did not receive this support. Results showed no effects of representational-competency supports. This suggests that instructional designs that are effective for representational-competency supports in structured learning environments may not be effective for educational video games. We discuss implications for future research, for designers of educational games, and for educators. 
    more » « less
  5. Gamification in education presents a number of benefits that can theoretically facilitate higher engagement and motivation among students when learning complex, technical concepts. As an innovative, high-potential educational tool, many educators and researchers are attempting to implement more effective gamification into undergraduate coursework. Cyber Security Operations (CSO) education is no exception. CSO education traditionally requires comprehension of complex concepts requiring a high level of technical and abstract thinking. By properly applying gamification to complex CSO concepts, engagement in students should see an increase. While an increase is expected, no comprehensive study of CSO gamification applications (GA) has yet been undertaken to fully synthesize the use and outcomes of existing implementations. To better understand and explore gamification in CSO education, a deeper analysis of current gamification applications is needed. This research outlines and conducts a methodical, comprehensive literature review using the Systematic Mapping Study process to identify implemented and evaluated GAs in undergraduate CSO education. This research serves as both a comprehensive repository and synthesis of existing GAs in cybersecurity, and as a starting point for further CSO GA research. With such a review, future studies can be undertaken to better understand CSO GAs. A total of 74 papers were discovered which evaluated GAs undergraduate CSO education, through literature published between 2007 and June 2022. Some publications discussed multiple GAs, resulting in a total of 80 undergraduate CSO GAs listing at https://bit.ly/3S260GS. The study outlines each GA identified and provides a short overview of each GA. It also provides a summary of engagement-level characteristics currently exhibited in existing CSO education GAs and discusses common themes and findings discovered in the course of the study. 
    more » « less