skip to main content


Title: Non-LTE analysis of K I in late-type stars
Context. Older models of Galactic chemical evolution (GCE) predict [K/Fe] ratios as much as 1 dex lower than those inferred from stellar observations. Abundances of potassium are mainly based on analyses of the 7698 Å resonance line, and the discrepancy between GCE models and observations is in part caused by the assumption of local thermodynamic equilibrium (LTE) in spectroscopic analyses. Aims. We study the statistical equilibrium of K  I , focusing on the non-LTE effects on the 7698 Å line. We aim to determine how non-LTE abundances of potassium can improve the analysis of its chemical evolution, and help to constrain the yields of GCE models. Methods. We construct a new model K  I atom that employs the most up-to-date atomic data. In particular, we calculate and present inelastic e+K collisional excitation cross-sections from the convergent close-coupling (CCC) and the B -Spline R -matrix (BSR) methods, and H+K collisions from the two-electron model (LCAO). We constructed a fine, extended grid of non-LTE abundance corrections based on 1D MARCS models that span 4000 < T eff ∕K < 8000, 0.50 < log g < 5.00, − 5.00 < [Fe/H] < + 0.50, and applied the corrections to potassium abundances extracted from the literature. Results. In concordance with previous studies, we find severe non-LTE effects in the 7698 Å line. The line is stronger in non-LTE and the abundance corrections can reach approximately − 0.7 dex for solar-metallicity stars such as Procyon. We determine potassium abundances in six benchmark stars, and obtain consistent results from different optical lines. We explore the effects of atmospheric inhomogeneity by computing for the first time a full 3D non-LTE stellar spectrum of K  I lines for a test star. We find that 3D modeling is necessary to predict a correct shape of the resonance 7698 Å line, but the line strength is similar to that found in 1D non-LTE. Conclusions. Our non-LTE abundance corrections reduce the scatter and change the cosmic trends of literature potassium abundances. In the regime [Fe/H] ≲−1.0 the non-LTE abundances show a good agreement with the GCE model with yields from rotating massive stars. The reduced scatter of the non-LTE corrected abundances of a sample of solar twins shows that line-by-line differential analysis techniques cannot fully compensate for systematic LTE modelling errors; the scatter introduced by such errors introduces a spurious dispersion to K evolution.  more » « less
Award ID(s):
1834740 1803844
NSF-PAR ID:
10127674
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
627
ISSN:
0004-6361
Page Range / eLocation ID:
A177
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Individual chemical abundances for 14 elements (C, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, and Ni) are derived for a sample of M dwarfs using high-resolution, near-infrared H -band spectra from the Sloan Digital Sky Survey-IV/Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. The quantitative analysis included synthetic spectra computed with 1D LTE plane-parallel MARCS models using the APOGEE Data Release 17 line list to determine chemical abundances. The sample consists of 11 M dwarfs in binary systems with warmer FGK dwarf primaries and 10 measured interferometric angular diameters. To minimize atomic diffusion effects, [X/Fe] ratios are used to compare M dwarfs in binary systems and literature results for their warmer primary stars, indicating good agreement (<0.08 dex) for all studied elements. The mean abundance difference in primaries minus this work’s M dwarfs is −0.05 ± 0.03 dex. It indicates that M dwarfs in binary systems are a reliable way to calibrate empirical relationships. A comparison with abundance, effective temperature, and surface gravity results from the APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) Data Release 16 finds a systematic offset of [M/H], T eff , log g = +0.21 dex, −50 K, and 0.30 dex, respectively, although ASPCAP [X/Fe] ratios are generally consistent with this study. The metallicities of the M dwarfs cover the range of [Fe/H] = −0.9 to +0.4 and are used to investigate Galactic chemical evolution via trends of [X/Fe] as a function of [Fe/H]. The behavior of the various elemental abundances [X/Fe] versus [Fe/H] agrees well with the corresponding trends derived from warmer FGK dwarfs, demonstrating that the APOGEE spectra can be used to examine Galactic chemical evolution using large samples of selected M dwarfs. 
    more » « less
  2. Abstract We present Non-Local Thermodynamic Equilibrium (Non-LTE) abundance corrections for Mg, Ca, and Fe in 12 ultra metal-poor (UMP) stars ([Fe/H] < −4.00). We show that they increase in absolute value toward the lower metallicity up to 0.45 dex for Mg, 0.30 dex for Ca, and 1.00 dex for Fe. This represents a first step toward a full Non-LTE analysis of chemical species in the UMP stars that will enable us to put useful constraints on the properties of the “First” stars. 
    more » « less
  3. Context. Phosphorus (P) is considered to be one of the key elements for life, making it an important element to look for in the abundance analysis of spectra of stellar systems. Yet, only a select number of spectroscopic studies exist to estimate the phosphorus abundances and investigate its trend across a range of metallicities. This is due to the lack of good phosphorus lines in the optical wavelength region and the requirement of careful manual analysis of the blended phosphorus lines in near-infrared H-band spectra obtained with individual observations and surveys such as the Apache Point Observatory Galactic Evolution Experiment (APOGEE). Aims. Based on a consistent and systematic analysis of high-resolution, near-infrared Immersion GRating INfrared Spectrograph (IGRINS) spectra of 38 K giant stars in the Solar neighborhood, we present and investigate the phosphorus abundance trend in the metallicity range of −1.2 dex < [Fe/H] < 0.4 dex. Furthermore, we compare this trend with the available chemical evolution models to shed some light on the origin and evolution of phosphorus. Methods. We have observed full H - and K -band spectra at a spectral resolving power of R = 45 000 with IGRINS mounted on the Gemini South telescope, the Discovery Channel Telescope, and the Harlan J Smith Telescope at McDonald Observatory. Abundances were determined from spectral lines by modeling the synthetic spectrum that best matches the observed spectrum by χ 2 minimization. For this task, we used the Spectroscopy Made Easy (SME) tool in combination with one-dimensional (1D) Model Atmospheres in a Radiative and Convective Scheme (MARCS) stellar atmosphere models. The investigated sample of stars have reliable stellar parameters estimated using optical FIber-fed Echelle Spectrograph (FIES) spectra obtained in a previous study of a set of stars called Giants in the Local Disk (GILD). In order to determine the phosphorus abundances from the 16482.92 Å phosphorus line, we needed to take special care blending the CO( v = 7−4) line. With the stellar parameters known, we thus determined the C, N, and O abundances from atomic carbon and a range of nonblended molecular lines (CO, CN, and OH) which are plentiful in the H-band region of K giant stars, assuring an appropriate modeling of the blending CO( v = 7−4) line. Results. We present the [P/Fe] versus [Fe/H] trend for K giant stars in the metallicity range of −1.2 dex < [Fe/H] < 0.4 dex and enhanced phosphorus abundances for two metal-poor s-rich stars. We find that our trend matches well with the compiled literature sample of prominently dwarf stars and the limited number of giant stars. Our trend is found to be higher by ~0.05−0.1 dex compared to the theoretical chemical evolution trend resulting from the core collapse supernova (type II) of massive stars with the phosphorus yields arbitrarily increased by a factor of 2.75. Thus the enhancement factor might need to be ~0.05−0.1 dex higher to match our trend. We also find an empirically determined primary behavior for phosphorus. Furthermore, the phosphorus abundance is found to be elevated by ~0.6−0.9 dex in the two s-enriched stars compared to the theoretical chemical evolution trend. 
    more » « less
  4. Abstract

    Phosphorus (P) is a critical element for life on Earth, yet the cosmic production sites of P are relatively uncertain. To understand how P has evolved in the solar neighborhood, we measured abundances for 163 FGK stars over a range of –1.09 < [Fe/H] < 0.47 using observations from the Habitable-zone Planet Finder instrument on the Hobby–Eberly Telescope. Atmospheric parameters were calculated by fitting a combination of astrometry, photometry, and Fe I line equivalent widths. Phosphorus abundances were measured by matching synthetic spectra to a P I feature at 10529.52 Å. Our [P/Fe] ratios show that chemical evolution models generally underpredict P over the observed metallicity range. Additionally, we find that the [P/Fe] differs by ∼0.1 dex between thin disk and thick disk stars that were identified with kinematics. The P abundances were compared withα-elements, iron-peak, odd-Z, and s-process elements, and we found that the evolution of P in the disk most strongly resembles that of theα-elements. We also find that molar P/C and N/C ratios for our sample match the scatter seen from other abundance studies. Finally, we measure a [P/Fe] = 0.09 ± 0.1 ratio in one low-αhalo star and probable Gaia–Sausage–Enceladus member, an abundance ratio ∼0.3–0.5 dex lower than the other Milky Way disk and halo stars at similar metallicities. Overall, we find that P is likely most significantly produced by massive stars in core-collapse supernovae, based on the largest P abundance survey to date.

     
    more » « less
  5. Aims. An analysis of the methylidyne (CH) radical in non-local thermodynamic equilibrium (NLTE) is performed for the physical conditions of cool stellar atmospheres typical of red giants (log ɡ = 2.0, T eff = 4500 K) and the Sun. The aim of the present work is to explore whether the G band of the CH molecule, which is commonly used in abundance diagnostics of carbon-enhanced metal-poor stars, is sensitive to NLTE effects. Methods. LTE and NLTE theoretical spectra were computed with the MULTI code. We used one-dimensional (1D) LTE hydrostatic MARCS model atmospheres with parameters representing eleven red giant stars with metallicities ranging from [Fe/H] = −4.0 to [Fe/H] = 0.0 and carbon-to-iron ratios of [C/Fe] = 0.0, +0.7, +1.5, and +3.0. The CH molecule model was represented by 1981 energy levels, 18 377 radiative bound-bound transitions, and 932 photo-dissociation reactions. The rates due to transitions caused by collisions with free electrons and hydrogen atoms were computed using classical recipes. Results. Our calculations suggest that NLTE effects in the statistical equilibrium of the CH molecule are significant and cannot be neglected for precision spectroscopic analysis of C abundances. The NLTE effects are mostly driven by radiative over-dissociation, owing to the very low dissociation threshold of the molecule and significant resonances in the photo-dissociation cross-sections. The NLTE effects in the G band increase with decreasing metallicity. When comparing the C abundances determined from the CH G band in LTE and in NLTE, we show that the C abundances are always under-estimated if LTE is assumed. The NLTE corrections to C abundance inferred from the CH feature range from +0.04 dex for the Sun to +0.21 dex for a red giant with metallicity [Fe/H] = −4.0. Conclusions. Departures from the LTE assumption in the CH molecule are non-negligible, and NLTE effects have to be taken into account in the diagnostic spectroscopy based on the CH lines. We show here that the NLTE effects in the optical CH lines are non-negligible for the Sun and red giant stars, but further calculations are warranted to investigate the effects in other regimes of stellar parameters. 
    more » « less