skip to main content


Title: Understanding dynamics in coarse-grained models. II. Coarse-grained diffusion modeled using hard sphere theory
The first paper of this series [J. Chem. Phys. 158, 034103 (2023)] demonstrated that excess entropy scaling holds for both fine-grained and corresponding coarse-grained (CG) systems. Despite its universality, a more exact determination of the scaling relationship was not possible due to the semi-empirical nature. In this second paper, an analytical excess entropy scaling relation is derived for bottom-up CG systems. At the single-site CG resolution, effective hard sphere systems are constructed that yield near-identical dynamical properties as the target CG systems by taking advantage of how hard sphere dynamics and excess entropy can be analytically expressed in terms of the liquid packing fraction. Inspired by classical equilibrium perturbation theories and recent advances in constructing hard sphere models for predicting activated dynamics of supercooled liquids, we propose a new approach for understanding the diffusion of molecular liquids in the normal regime using hard sphere reference fluids. The proposed “fluctuation matching” is designed to have the same amplitude of long wavelength density fluctuations (dimensionless compressibility) as the CG system. Utilizing the Enskog theory to derive an expression for hard sphere diffusion coefficients, a bridge between the CG dynamics and excess entropy is then established. The CG diffusion coefficient can be roughly estimated using various equations of the state, and an accurate prediction of accelerated CG dynamics at different temperatures is also possible in advance of running any CG simulation. By introducing another layer of coarsening, these findings provide a more rigorous method to assess excess entropy scaling and understand the accelerated CG dynamics of molecular fluids.  more » « less
Award ID(s):
2102677
PAR ID:
10413693
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
158
Issue:
3
ISSN:
0021-9606
Page Range / eLocation ID:
034104
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper series aims to establish a complete correspondence between fine-grained (FG) and coarse-grained (CG) dynamics by way of excess entropy scaling (introduced in Paper I). While Paper II successfully captured translational motions in CG systems using a hard sphere mapping, the absence of rotational motions in single-site CG models introduces differences between FG and CG dynamics. In this third paper, our objective is to faithfully recover atomistic diffusion coefficients from CG dynamics by incorporating rotational dynamics. By extracting FG rotational diffusion, we unravel, for the first time reported to our knowledge, a universality in excess entropy scaling between the rotational and translational diffusion. Once the missing rotational dynamics are integrated into the CG translational dynamics, an effective translation-rotation coupling becomes essential. We propose two different approaches for estimating this coupling parameter: the rough hard sphere theory with acentric factor (temperature-independent) or the rough Lennard-Jones model with CG attractions (temperature-dependent). Altogether, we demonstrate that FG diffusion coefficients can be recovered from CG diffusion coefficients by (1) incorporating “entropy-free” rotational diffusion with translation-rotation coupling and (2) recapturing the missing entropy. Our findings shed light on the fundamental relationship between FG and CG dynamics in molecular fluids. 
    more » « less
  2. Coarse-grained (CG) models facilitate an efficient exploration of complex systems by reducing the unnecessary degrees of freedom of the fine-grained (FG) system while recapitulating major structural correlations. Unlike structural properties, assessing dynamic properties in CG modeling is often unfeasible due to the accelerated dynamics of the CG models, which allows for more efficient structural sampling. Therefore, the ultimate goal of the present series of articles is to establish a better correspondence between the FG and CG dynamics. To assess and compare dynamical properties in the FG and the corresponding CG models, we utilize the excess entropy scaling relationship. For Paper I of this series, we provide evidence that the FG and the corresponding CG counterpart follow the same universal scaling relationship. By carefully reviewing and examining the literature, we develop a new theory to calculate excess entropies for the FG and CG systems while accounting for entropy representability. We demonstrate that the excess entropy scaling idea can be readily applied to liquid water and methanol systems at both the FG and CG resolutions. For both liquids, we reveal that the scaling exponents remain unchanged from the coarse-graining process, indicating that the scaling behavior is universal for the same underlying molecular systems. Combining this finding with the concept of mapping entropy in CG models, we show that the missing entropy plays an important role in accelerating the CG dynamics. 
    more » « less
  3. Coarse-grained (CG) interactions determined via bottom-up methodologies can faithfully reproduce the structural correlations observed in fine-grained (atomistic resolution) systems, yet they can suffer from limited extensibility due to complex many-body correlations. As part of an ongoing effort to understand and improve the applicability of bottom-up CG models, we propose an alternative approach to address both accuracy and transferability. Our main idea draws from classical perturbation theory to partition the hard sphere repulsive term from effective CG interactions. We then introduce Gaussian basis functions corresponding to the system’s characteristic length by linking these Gaussian sub-interactions to the local particle densities at each coordination shell. The remaining perturbative long-range interaction can be treated as a collective solvation interaction, which we show exhibits a Gaussian form derived from integral equation theories. By applying this numerical parametrization protocol to CG liquid systems, our microscopic theory elucidates the emergence of Gaussian interactions in common phenomenological CG models. To facilitate transferability for these reduced descriptions, we further infer equations of state to determine the sub-interaction parameter as a function of the system variables. The reduced models exhibit excellent transferability across the thermodynamic state points. Furthermore, we propose a new strategy to design the cross-interactions between distinct CG sites in liquid mixtures. This involves combining each Gaussian in the proper radial domain, yielding accurate CG potentials of mean force and structural correlations for multi-component systems. Overall, our findings establish a solid foundation for constructing transferable bottom-up CG models of liquids with enhanced extensibility.

     
    more » « less
  4. A hallmark of meso-scale interfacial fluids is the multi-faceted, scale-dependent interfacial energy, which often manifests different characteristics across the molecular and continuum scale. The multi-scale nature imposes a challenge to construct reliable coarse-grained (CG) models, where the CG potential function needs to faithfully encode the many-body interactions arising from the unresolved atomistic interactions and account for the heterogeneous density distributions across the interface. We construct the CG models of both single- and two-component polymeric fluid systems based on the recently developed deep coarse-grained potential [Zhang et al., J. Chem. Phys. 149, 034101 (2018)] scheme, where each polymer molecule is modeled as a CG particle. By only using the training samples of the instantaneous force under the thermal equilibrium state, the constructed CG models can accurately reproduce both the probability density function of the void formation in bulk and the spectrum of the capillary wave across the fluid interface. More importantly, the CG models accurately predict the volume-to-area scaling transition for the apolar solvation energy, illustrating the effectiveness to probe the meso-scale collective behaviors encoded with molecular-level fidelity. 
    more » « less
  5. Our analytically based technique for coarse-graining (CG) polymer simulations dramatically improves spatial and temporal scaling while preserving thermodynamic quantities and bulk properties. The purpose of CG codes is to run more efficient molecular dynamics simulations, yet the research field generally lacks thorough analysis of how such codes scale with respect to full-atom representations. This paper conducts an in-depth performance study of highly realistic polymer melts on modern supercomputing systems. We also present a workflow that integrates our analytical solution for calculating CG forces with new high-performance techniques for mapping back and forth between the atomistic and CG descriptions in LAMMPS. The workflow benefits from the performance of CG, while maintaining full-atom accuracy. Our results show speedups up to 12x faster than atomistic simulations. 
    more » « less