skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Universality of Poisson Limits for Moduli of Roots of Kac Polynomials
Abstract We give a new proof of a recent resolution [18] by Michelen and Sahasrabudhe of a conjecture of Shepp and Vanderbei [19] that the moduli of roots of Gaussian Kac polynomials of degree $$n$$, centered at $$1$$ and rescaled by $n^2$, should form a Poisson point process. We use this new approach to verify a conjecture from [18] that the Poisson statistics are in fact universal.  more » « less
Award ID(s):
1752345
PAR ID:
10413726
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Mathematics Research Notices
Volume:
2023
Issue:
8
ISSN:
1073-7928
Page Range / eLocation ID:
6648 to 6690
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We continue the study of multiple cluster structures in the rings of regular functions on $$GL_n$$, $$SL_n$$ and $$\operatorname{Mat}_n$$ that are compatible with Poisson-Lie and Poisson-homogeneous structures. According to our initial conjecture, each class in the Belavin-Drinfeld classification of Poisson--Lie structures on a semisimple complex group $$\mathcal G$$ corresponds to a cluster structure in $$\mathcal O(\mathcal G)$$. Here we prove this conjecture for a large subset of Belavin-Drinfeld (BD) data of $$A_n$$ type, which includes all the previously known examples. Namely, we subdivide all possible $$A_n$$ type BD data into oriented and non-oriented kinds. In the oriented case, we single out BD data satisfying a certain combinatorial condition that we call aperiodicity and prove that for any BD data of this kind there exists a regular cluster structure compatible with the corresponding Poisson-Lie bracket. In fact, we extend the aperiodicity condition to pairs of oriented BD data and prove a more general result that establishes an existence of a regular cluster structure on $$SL_n$$ compatible with a Poisson bracket homogeneous with respect to the right and left action of two copies of $$SL_n$$ equipped with two different Poisson-Lie brackets. If the aperiodicity condition is not satisfied, a compatible cluster structure has to be replaced with a generalized cluster structure. We will address this situation in future publications. 
    more » « less
  2. We continue the study of multiple cluster structures in the rings of regular functions on G L n GL_n , S L n SL_n and M a t n Mat_n that are compatible with Poisson–Lie and Poisson-homogeneous structures. According to our initial conjecture, each class in the Belavin–Drinfeld classification of Poisson–Lie structures on a semisimple complex group G \mathcal {G} corresponds to a cluster structure in O ( G ) \mathcal {O}(\mathcal {G}) . Here we prove this conjecture for a large subset of Belavin–Drinfeld (BD) data of A n A_n type, which includes all the previously known examples. Namely, we subdivide all possible A n A_n type BD data into oriented and non-oriented kinds. We further single out BD data satisfying a certain combinatorial condition that we call aperiodicity and prove that for any oriented BD data of this kind there exists a regular cluster structure compatible with the corresponding Poisson–Lie bracket. In fact, we extend the aperiodicity condition to pairs of oriented BD data and prove a more general result that establishes an existence of a regular cluster structure on S L n SL_n compatible with a Poisson bracket homogeneous with respect to the right and left action of two copies of S L n SL_n equipped with two different Poisson-Lie brackets. Similar results hold for aperiodic non-oriented BD data, but the analysis of the corresponding regular cluster structure is more involved and not given here. If the aperiodicity condition is not satisfied, a compatible cluster structure has to be replaced with a generalized cluster structure. We will address these situations in future publications. 
    more » « less
  3. We prove a tight upper bound on the variance of the priority sampling method (aka sequential Poisson sampling). Our proof is significantly shorter and simpler than the original proof given by Mario Szegedy at STOC 2006, which resolved a conjecture by Duffield, Lund, and Thorup. 
    more » « less
  4. Abstract A long-standing conjecture of ErdƑs and Simonovits asserts that for every rational number $$r\in (1,2)$$ there exists a bipartite graph H such that $$\mathrm{ex}(n,H)=\Theta(n^r)$$ . So far this conjecture is known to be true only for rationals of form $1+1/k$ and $2-1/k$ , for integers $$k\geq 2$$ . In this paper, we add a new form of rationals for which the conjecture is true: $2-2/(2k+1)$ , for $$k\geq 2$$ . This in turn also gives an affirmative answer to a question of Pinchasi and Sharir on cube-like graphs. Recently, a version of ErdƑs and Simonovits $$^{\prime}$$ s conjecture, where one replaces a single graph by a finite family, was confirmed by Bukh and Conlon. They proposed a construction of bipartite graphs which should satisfy ErdƑs and Simonovits $$^{\prime}$$ s conjecture. Our result can also be viewed as a first step towards verifying Bukh and Conlon $$^{\prime}$$ s conjecture. We also prove an upper bound on the TurĂĄn number of theta graphs in an asymmetric setting and employ this result to obtain another new rational exponent for TurĂĄn exponents: $r=7/5$ . 
    more » « less
  5. Abstract We prove several different anti-concentration inequalities for functions of independent Bernoulli-distributed random variables. First, motivated by a conjecture of Alon, Hefetz, Krivelevich and Tyomkyn, we prove some “Poisson-type” anti-concentration theorems that give bounds of the form 1/ e + o (1) for the point probabilities of certain polynomials. Second, we prove an anti-concentration inequality for polynomials with nonnegative coefficients which extends the classical ErdƑs–Littlewood–Offord theorem and improves a theorem of Meka, Nguyen and Vu for polynomials of this type. As an application, we prove some new anti-concentration bounds for subgraph counts in random graphs. 
    more » « less