skip to main content


Title: SageDB: An Instance-Optimized Data Analytics System
Modern data systems are typically both complex and general-purpose. They are complex because of the numerous internal knobs and parameters that users need to manually tune in order to achieve good performance; they are general-purpose because they are designed to handle diverse use cases, and therefore often do not achieve the best possible performance for any specific use case. A recent trend aims to tackle these pitfalls: instance-optimized systems are designed to automatically self-adjust in order to achieve the best performance for a specific use case, i.e., a dataset and query workload. Thus far, the research community has focused on creating instance-optimized database components, such as learned indexes and learned cardinality estimators, which are evaluated in isolation. However, to the best of our knowledge, there is no complete data system built with instance-optimization as a foundational design principle. In this paper, we present a progress report on SageDB, our effort towards building the first instance-optimized data system. SageDB synthesizes various instance-optimization techniques to automatically specialize for a given use case, while simultaneously exposing a simple user interface that places minimal technical burden on the user. Our prototype outperforms a commercial cloud-based analytics system by up to 3X on end-to-end query workloads and up to 250X on individual queries. SageDB is an ongoing research effort, and we highlight our lessons learned and key directions for future work.  more » « less
Award ID(s):
1900933
NSF-PAR ID:
10413734
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the VLDB Endowment
Volume:
15
Issue:
13
ISSN:
2150-8097
Page Range / eLocation ID:
4062 to 4078
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Obeid, I. ; Selesnik, I. ; Picone, J. (Ed.)
    The Neuronix high-performance computing cluster allows us to conduct extensive machine learning experiments on big data [1]. This heterogeneous cluster uses innovative scheduling technology, Slurm [2], that manages a network of CPUs and graphics processing units (GPUs). The GPU farm consists of a variety of processors ranging from low-end consumer grade devices such as the Nvidia GTX 970 to higher-end devices such as the GeForce RTX 2080. These GPUs are essential to our research since they allow extremely compute-intensive deep learning tasks to be executed on massive data resources such as the TUH EEG Corpus [2]. We use TensorFlow [3] as the core machine learning library for our deep learning systems, and routinely employ multiple GPUs to accelerate the training process. Reproducible results are essential to machine learning research. Reproducibility in this context means the ability to replicate an existing experiment – performance metrics such as error rates should be identical and floating-point calculations should match closely. Three examples of ways we typically expect an experiment to be replicable are: (1) The same job run on the same processor should produce the same results each time it is run. (2) A job run on a CPU and GPU should produce identical results. (3) A job should produce comparable results if the data is presented in a different order. System optimization requires an ability to directly compare error rates for algorithms evaluated under comparable operating conditions. However, it is a difficult task to exactly reproduce the results for large, complex deep learning systems that often require more than a trillion calculations per experiment [5]. This is a fairly well-known issue and one we will explore in this poster. Researchers must be able to replicate results on a specific data set to establish the integrity of an implementation. They can then use that implementation as a baseline for comparison purposes. A lack of reproducibility makes it very difficult to debug algorithms and validate changes to the system. Equally important, since many results in deep learning research are dependent on the order in which the system is exposed to the data, the specific processors used, and even the order in which those processors are accessed, it becomes a challenging problem to compare two algorithms since each system must be individually optimized for a specific data set or processor. This is extremely time-consuming for algorithm research in which a single run often taxes a computing environment to its limits. Well-known techniques such as cross-validation [5,6] can be used to mitigate these effects, but this is also computationally expensive. These issues are further compounded by the fact that most deep learning algorithms are susceptible to the way computational noise propagates through the system. GPUs are particularly notorious for this because, in a clustered environment, it becomes more difficult to control which processors are used at various points in time. Another equally frustrating issue is that upgrades to the deep learning package, such as the transition from TensorFlow v1.9 to v1.13, can also result in large fluctuations in error rates when re-running the same experiment. Since TensorFlow is constantly updating functions to support GPU use, maintaining an historical archive of experimental results that can be used to calibrate algorithm research is quite a challenge. This makes it very difficult to optimize the system or select the best configurations. The overall impact of all of these issues described above is significant as error rates can fluctuate by as much as 25% due to these types of computational issues. Cross-validation is one technique used to mitigate this, but that is expensive since you need to do multiple runs over the data, which further taxes a computing infrastructure already running at max capacity. GPUs are preferred when training a large network since these systems train at least two orders of magnitude faster than CPUs [7]. Large-scale experiments are simply not feasible without using GPUs. However, there is a tradeoff to gain this performance. Since all our GPUs use the NVIDIA CUDA® Deep Neural Network library (cuDNN) [8], a GPU-accelerated library of primitives for deep neural networks, it adds an element of randomness into the experiment. When a GPU is used to train a network in TensorFlow, it automatically searches for a cuDNN implementation. NVIDIA’s cuDNN implementation provides algorithms that increase the performance and help the model train quicker, but they are non-deterministic algorithms [9,10]. Since our networks have many complex layers, there is no easy way to avoid this randomness. Instead of comparing each epoch, we compare the average performance of the experiment because it gives us a hint of how our model is performing per experiment, and if the changes we make are efficient. In this poster, we will discuss a variety of issues related to reproducibility and introduce ways we mitigate these effects. For example, TensorFlow uses a random number generator (RNG) which is not seeded by default. TensorFlow determines the initialization point and how certain functions execute using the RNG. The solution for this is seeding all the necessary components before training the model. This forces TensorFlow to use the same initialization point and sets how certain layers work (e.g., dropout layers). However, seeding all the RNGs will not guarantee a controlled experiment. Other variables can affect the outcome of the experiment such as training using GPUs, allowing multi-threading on CPUs, using certain layers, etc. To mitigate our problems with reproducibility, we first make sure that the data is processed in the same order during training. Therefore, we save the data from the last experiment and to make sure the newer experiment follows the same order. If we allow the data to be shuffled, it can affect the performance due to how the model was exposed to the data. We also specify the float data type to be 32-bit since Python defaults to 64-bit. We try to avoid using 64-bit precision because the numbers produced by a GPU can vary significantly depending on the GPU architecture [11-13]. Controlling precision somewhat reduces differences due to computational noise even though technically it increases the amount of computational noise. We are currently developing more advanced techniques for preserving the efficiency of our training process while also maintaining the ability to reproduce models. In our poster presentation we will demonstrate these issues using some novel visualization tools, present several examples of the extent to which these issues influence research results on electroencephalography (EEG) and digital pathology experiments and introduce new ways to manage such computational issues. 
    more » « less
  2. null (Ed.)
    The DeepLearningEpilepsyDetectionChallenge: design, implementation, andtestofanewcrowd-sourced AIchallengeecosystem Isabell Kiral*, Subhrajit Roy*, Todd Mummert*, Alan Braz*, Jason Tsay, Jianbin Tang, Umar Asif, Thomas Schaffter, Eren Mehmet, The IBM Epilepsy Consortium◊ , Joseph Picone, Iyad Obeid, Bruno De Assis Marques, Stefan Maetschke, Rania Khalaf†, Michal Rosen-Zvi† , Gustavo Stolovitzky† , Mahtab Mirmomeni† , Stefan Harrer† * These authors contributed equally to this work † Corresponding authors: rkhalaf@us.ibm.com, rosen@il.ibm.com, gustavo@us.ibm.com, mahtabm@au1.ibm.com, sharrer@au.ibm.com ◊ Members of the IBM Epilepsy Consortium are listed in the Acknowledgements section J. Picone and I. Obeid are with Temple University, USA. T. Schaffter is with Sage Bionetworks, USA. E. Mehmet is with the University of Illinois at Urbana-Champaign, USA. All other authors are with IBM Research in USA, Israel and Australia. Introduction This decade has seen an ever-growing number of scientific fields benefitting from the advances in machine learning technology and tooling. More recently, this trend reached the medical domain, with applications reaching from cancer diagnosis [1] to the development of brain-machine-interfaces [2]. While Kaggle has pioneered the crowd-sourcing of machine learning challenges to incentivise data scientists from around the world to advance algorithm and model design, the increasing complexity of problem statements demands of participants to be expert data scientists, deeply knowledgeable in at least one other scientific domain, and competent software engineers with access to large compute resources. People who match this description are few and far between, unfortunately leading to a shrinking pool of possible participants and a loss of experts dedicating their time to solving important problems. Participation is even further restricted in the context of any challenge run on confidential use cases or with sensitive data. Recently, we designed and ran a deep learning challenge to crowd-source the development of an automated labelling system for brain recordings, aiming to advance epilepsy research. A focus of this challenge, run internally in IBM, was the development of a platform that lowers the barrier of entry and therefore mitigates the risk of excluding interested parties from participating. The challenge: enabling wide participation With the goal to run a challenge that mobilises the largest possible pool of participants from IBM (global), we designed a use case around previous work in epileptic seizure prediction [3]. In this “Deep Learning Epilepsy Detection Challenge”, participants were asked to develop an automatic labelling system to reduce the time a clinician would need to diagnose patients with epilepsy. Labelled training and blind validation data for the challenge were generously provided by Temple University Hospital (TUH) [4]. TUH also devised a novel scoring metric for the detection of seizures that was used as basis for algorithm evaluation [5]. In order to provide an experience with a low barrier of entry, we designed a generalisable challenge platform under the following principles: 1. No participant should need to have in-depth knowledge of the specific domain. (i.e. no participant should need to be a neuroscientist or epileptologist.) 2. No participant should need to be an expert data scientist. 3. No participant should need more than basic programming knowledge. (i.e. no participant should need to learn how to process fringe data formats and stream data efficiently.) 4. No participant should need to provide their own computing resources. In addition to the above, our platform should further • guide participants through the entire process from sign-up to model submission, • facilitate collaboration, and • provide instant feedback to the participants through data visualisation and intermediate online leaderboards. The platform The architecture of the platform that was designed and developed is shown in Figure 1. The entire system consists of a number of interacting components. (1) A web portal serves as the entry point to challenge participation, providing challenge information, such as timelines and challenge rules, and scientific background. The portal also facilitated the formation of teams and provided participants with an intermediate leaderboard of submitted results and a final leaderboard at the end of the challenge. (2) IBM Watson Studio [6] is the umbrella term for a number of services offered by IBM. Upon creation of a user account through the web portal, an IBM Watson Studio account was automatically created for each participant that allowed users access to IBM's Data Science Experience (DSX), the analytics engine Watson Machine Learning (WML), and IBM's Cloud Object Storage (COS) [7], all of which will be described in more detail in further sections. (3) The user interface and starter kit were hosted on IBM's Data Science Experience platform (DSX) and formed the main component for designing and testing models during the challenge. DSX allows for real-time collaboration on shared notebooks between team members. A starter kit in the form of a Python notebook, supporting the popular deep learning libraries TensorFLow [8] and PyTorch [9], was provided to all teams to guide them through the challenge process. Upon instantiation, the starter kit loaded necessary python libraries and custom functions for the invisible integration with COS and WML. In dedicated spots in the notebook, participants could write custom pre-processing code, machine learning models, and post-processing algorithms. The starter kit provided instant feedback about participants' custom routines through data visualisations. Using the notebook only, teams were able to run the code on WML, making use of a compute cluster of IBM's resources. The starter kit also enabled submission of the final code to a data storage to which only the challenge team had access. (4) Watson Machine Learning provided access to shared compute resources (GPUs). Code was bundled up automatically in the starter kit and deployed to and run on WML. WML in turn had access to shared storage from which it requested recorded data and to which it stored the participant's code and trained models. (5) IBM's Cloud Object Storage held the data for this challenge. Using the starter kit, participants could investigate their results as well as data samples in order to better design custom algorithms. (6) Utility Functions were loaded into the starter kit at instantiation. This set of functions included code to pre-process data into a more common format, to optimise streaming through the use of the NutsFlow and NutsML libraries [10], and to provide seamless access to the all IBM services used. Not captured in the diagram is the final code evaluation, which was conducted in an automated way as soon as code was submitted though the starter kit, minimising the burden on the challenge organising team. Figure 1: High-level architecture of the challenge platform Measuring success The competitive phase of the "Deep Learning Epilepsy Detection Challenge" ran for 6 months. Twenty-five teams, with a total number of 87 scientists and software engineers from 14 global locations participated. All participants made use of the starter kit we provided and ran algorithms on IBM's infrastructure WML. Seven teams persisted until the end of the challenge and submitted final solutions. The best performing solutions reached seizure detection performances which allow to reduce hundred-fold the time eliptologists need to annotate continuous EEG recordings. Thus, we expect the developed algorithms to aid in the diagnosis of epilepsy by significantly shortening manual labelling time. Detailed results are currently in preparation for publication. Equally important to solving the scientific challenge, however, was to understand whether we managed to encourage participation from non-expert data scientists. Figure 2: Primary occupation as reported by challenge participants Out of the 40 participants for whom we have occupational information, 23 reported Data Science or AI as their main job description, 11 reported being a Software Engineer, and 2 people had expertise in Neuroscience. Figure 2 shows that participants had a variety of specialisations, including some that are in no way related to data science, software engineering, or neuroscience. No participant had deep knowledge and experience in data science, software engineering and neuroscience. Conclusion Given the growing complexity of data science problems and increasing dataset sizes, in order to solve these problems, it is imperative to enable collaboration between people with differences in expertise with a focus on inclusiveness and having a low barrier of entry. We designed, implemented, and tested a challenge platform to address exactly this. Using our platform, we ran a deep-learning challenge for epileptic seizure detection. 87 IBM employees from several business units including but not limited to IBM Research with a variety of skills, including sales and design, participated in this highly technical challenge. 
    more » « less
  3. Dense matrix multiply (MM) serves as one of the most heavily used kernels in deep learning applications. To cope with the high computation demands of these applications, heterogeneous architectures featuring both FPGA and dedicated ASIC accelerators have emerged as promising platforms. For example, the AMD/Xilinx Versal ACAP architecture combines general-purpose CPU cores and programmable logic (PL) with AI Engine processors (AIE) optimized for AI/ML. An array of 400 AI Engine processors executing at 1 GHz can theoretically provide up to 6.4 TFLOPs performance for 32-bit floating-point (fp32) data. However, machine learning models often contain both large and small MM operations. While large MM operations can be parallelized efficiently across many cores, small MM operations typically cannot. In our investigation, we observe that executing some small MM layers from the BERT natural language processing model on a large, monolithic MM accelerator in Versal ACAP achieved less than 5% of the theoretical peak performance. Therefore, one key question arises: How can we design accelerators to fully use the abundant computation resources under limited communication bandwidth for end-to-end applications with multiple MM layers of diverse sizes? We identify the biggest system throughput bottleneck resulting from the mismatch of massive computation resources of one monolithic accelerator and the various MM layers of small sizes in the application. To resolve this problem, we propose the CHARM framework to compose multiple diverse MM accelerator architectures working concurrently towards different layers within one application. CHARM includes analytical models which guide design space exploration to determine accelerator partitions and layer scheduling. To facilitate the system designs, CHARM automatically generates code, enabling thorough onboard design verification. We deploy the CHARM framework for four different deep learning applications, including BERT, ViT, NCF, MLP, on the AMD/Xilinx Versal ACAP VCK190 evaluation board. Our experiments show that we achieve 1.46 TFLOPs, 1.61 TFLOPs, 1.74 TFLOPs, and 2.94 TFLOPs inference throughput for BERT, ViT, NCF, MLP, respectively, which obtain 5.40x, 32.51x, 1.00x and 1.00x throughput gains compared to one monolithic accelerator. 
    more » « less
  4. null (Ed.)
    In this paper, we present design, implementation and evaluation of a control framework, EXTRA (EXperience-driven conTRol frAmework), for scheduling in general-purpose Distributed Stream Data Processing Systems (DSDPSs). Our design is novel due to the following reasons. First, EXTRA enables a DSDPS to dynamically change the number of threads on the fly according to system states and demands. Most existing methods, however, use a fixed number of threads to carry workload (for each processing unit of an application), which is specified by a user in advance and does not change during runtime. So our design introduces a whole new dimension for control in DSDPSs, which has a great potential to significantly improve system flexibility and efficiency, but makes the scheduling problem much harder. Second, EXTRA leverages an experience/data driven model-free approach for dynamic control using the emerging Deep Reinforcement Learning (DRL), which enables a DSDPS to learn the best way to control itself from its own experience just as a human learns a skill (such as driving and swimming) without any accurate and mathematically solvable model. We implemented it based on a widely-used DSDPS, Apache Storm, and evaluated its performance with three representative Stream Data Processing (SDP) applications: continuous queries, word count (stream version) and log stream processing. Particularly, we performed experiments under realistic settings (where multiple application instances are mixed up together), rather than a simplified setting (where experiments are conducted only on a single application instance) used in most related works. Extensive experimental results show: 1) Compared to Storm’s default scheduler and the state-of-the-art model-based method, EXTRA substantially reduces average end-to-end tuple processing time by 39.6% and 21.6% respectively on average. 2) EXTRA does lead to more flexible and efficient stream data processing by enabling the use of a variable number of threads. 3) EXTRA is robust in a highly dynamic environment with significant workload change. 
    more » « less
  5. Abstract Purpose The ability to identify the scholarship of individual authors is essential for performance evaluation. A number of factors hinder this endeavor. Common and similarly spelled surnames make it difficult to isolate the scholarship of individual authors indexed on large databases. Variations in name spelling of individual scholars further complicates matters. Common family names in scientific powerhouses like China make it problematic to distinguish between authors possessing ubiquitous and/or anglicized surnames (as well as the same or similar first names). The assignment of unique author identifiers provides a major step toward resolving these difficulties. We maintain, however, that in and of themselves, author identifiers are not sufficient to fully address the author uncertainty problem. In this study we build on the author identifier approach by considering commonalities in fielded data between authors containing the same surname and first initial of their first name. We illustrate our approach using three case studies. Design/methodology/approach The approach we advance in this study is based on commonalities among fielded data in search results. We cast a broad initial net—i.e., a Web of Science (WOS) search for a given author’s last name, followed by a comma, followed by the first initial of his or her first name (e.g., a search for ‘John Doe’ would assume the form: ‘Doe, J’). Results for this search typically contain all of the scholarship legitimately belonging to this author in the given database (i.e., all of his or her true positives), along with a large amount of noise, or scholarship not belonging to this author (i.e., a large number of false positives). From this corpus we proceed to iteratively weed out false positives and retain true positives. Author identifiers provide a good starting point—e.g., if ‘Doe, J’ and ‘Doe, John’ share the same author identifier, this would be sufficient for us to conclude these are one and the same individual. We find email addresses similarly adequate—e.g., if two author names which share the same surname and same first initial have an email address in common, we conclude these authors are the same person. Author identifier and email address data is not always available, however. When this occurs, other fields are used to address the author uncertainty problem. Commonalities among author data other than unique identifiers and email addresses is less conclusive for name consolidation purposes. For example, if ‘Doe, John’ and ‘Doe, J’ have an affiliation in common, do we conclude that these names belong the same person? They may or may not; affiliations have employed two or more faculty members sharing the same last and first initial. Similarly, it’s conceivable that two individuals with the same last name and first initial publish in the same journal, publish with the same co-authors, and/or cite the same references. Should we then ignore commonalities among these fields and conclude they’re too imprecise for name consolidation purposes? It is our position that such commonalities are indeed valuable for addressing the author uncertainty problem, but more so when used in combination. Our approach makes use of automation as well as manual inspection, relying initially on author identifiers, then commonalities among fielded data other than author identifiers, and finally manual verification. To achieve name consolidation independent of author identifier matches, we have developed a procedure that is used with bibliometric software called VantagePoint (see www.thevantagepoint.com) While the application of our technique does not exclusively depend on VantagePoint, it is the software we find most efficient in this study. The script we developed to implement this procedure is designed to implement our name disambiguation procedure in a way that significantly reduces manual effort on the user’s part. Those who seek to replicate our procedure independent of VantagePoint can do so by manually following the method we outline, but we note that the manual application of our procedure takes a significant amount of time and effort, especially when working with larger datasets. Our script begins by prompting the user for a surname and a first initial (for any author of interest). It then prompts the user to select a WOS field on which to consolidate author names. After this the user is prompted to point to the name of the authors field, and finally asked to identify a specific author name (referred to by the script as the primary author) within this field whom the user knows to be a true positive (a suggested approach is to point to an author name associated with one of the records that has the author’s ORCID iD or email address attached to it). The script proceeds to identify and combine all author names sharing the primary author’s surname and first initial of his or her first name who share commonalities in the WOS field on which the user was prompted to consolidate author names. This typically results in significant reduction in the initial dataset size. After the procedure completes the user is usually left with a much smaller (and more manageable) dataset to manually inspect (and/or apply additional name disambiguation techniques to). Research limitations Match field coverage can be an issue. When field coverage is paltry dataset reduction is not as significant, which results in more manual inspection on the user’s part. Our procedure doesn’t lend itself to scholars who have had a legal family name change (after marriage, for example). Moreover, the technique we advance is (sometimes, but not always) likely to have a difficult time dealing with scholars who have changed careers or fields dramatically, as well as scholars whose work is highly interdisciplinary. Practical implications The procedure we advance has the ability to save a significant amount of time and effort for individuals engaged in name disambiguation research, especially when the name under consideration is a more common family name. It is more effective when match field coverage is high and a number of match fields exist. Originality/value Once again, the procedure we advance has the ability to save a significant amount of time and effort for individuals engaged in name disambiguation research. It combines preexisting with more recent approaches, harnessing the benefits of both. Findings Our study applies the name disambiguation procedure we advance to three case studies. Ideal match fields are not the same for each of our case studies. We find that match field effectiveness is in large part a function of field coverage. Comparing original dataset size, the timeframe analyzed for each case study is not the same, nor are the subject areas in which they publish. Our procedure is more effective when applied to our third case study, both in terms of list reduction and 100% retention of true positives. We attribute this to excellent match field coverage, and especially in more specific match fields, as well as having a more modest/manageable number of publications. While machine learning is considered authoritative by many, we do not see it as practical or replicable. The procedure advanced herein is both practical, replicable and relatively user friendly. It might be categorized into a space between ORCID and machine learning. Machine learning approaches typically look for commonalities among citation data, which is not always available, structured or easy to work with. The procedure we advance is intended to be applied across numerous fields in a dataset of interest (e.g. emails, coauthors, affiliations, etc.), resulting in multiple rounds of reduction. Results indicate that effective match fields include author identifiers, emails, source titles, co-authors and ISSNs. While the script we present is not likely to result in a dataset consisting solely of true positives (at least for more common surnames), it does significantly reduce manual effort on the user’s part. Dataset reduction (after our procedure is applied) is in large part a function of (a) field availability and (b) field coverage. 
    more » « less