skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: BGWAS: Bayesian variable selection in linear mixed models with nonlocal priors for genome-wide association studies
Abstract Background Genome-wide association studies (GWAS) seek to identify single nucleotide polymorphisms (SNPs) that cause observed phenotypes. However, with highly correlated SNPs, correlated observations, and the number of SNPs being two orders of magnitude larger than the number of observations, GWAS procedures often suffer from high false positive rates. Results We propose BGWAS, a novel Bayesian variable selection method based on nonlocal priors for linear mixed models specifically tailored for genome-wide association studies. Our proposed method BGWAS uses a novel nonlocal prior for linear mixed models (LMMs). BGWAS has two steps: screening and model selection. The screening step scans through all the SNPs fitting one LMM for each SNP and then uses Bayesian false discovery control to select a set of candidate SNPs. After that, a model selection step searches through the space of LMMs that may have any number of SNPs from the candidate set. A simulation study shows that, when compared to popular GWAS procedures, BGWAS greatly reduces false positives while maintaining the same ability to detect true positive SNPs. We show the utility and flexibility of BGWAS with two case studies: a case study on salt stress in plants, and a case study on alcohol use disorder. Conclusions BGWAS maintains and in some cases increases the recall of true SNPs while drastically lowering the number of false positives compared to popular SMA procedures.  more » « less
Award ID(s):
1853549 2054173
PAR ID:
10413766
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
BMC Bioinformatics
Volume:
24
Issue:
1
ISSN:
1471-2105
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background Genome-wide association studies (GWASes) aim to identify single nucleotide polymorphisms (SNPs) associated with a given phenotype. A common approach for the analysis of GWAS is single marker analysis (SMA) based on linear mixed models (LMMs). However, LMM-based SMA usually yields a large number of false discoveries and cannot be directly applied to non-Gaussian phenotypes such as count data. Results We present a novel Bayesian method to find SNPs associated with non-Gaussian phenotypes. To that end, we use generalized linear mixed models (GLMMs) and, thus, call our method Bayesian GLMMs for GWAS (BG2). To deal with the high dimensionality of GWAS analysis, we propose novel nonlocal priors specifically tailored for GLMMs. In addition, we develop related fast approximate Bayesian computations. BG2 uses a two-step procedure: first, BG2 screens for candidate SNPs; second, BG2 performs model selection that considers all screened candidate SNPs as possible regressors. A simulation study shows favorable performance of BG2 when compared to GLMM-based SMA. We illustrate the usefulness and flexibility of BG2 with three case studies on cocaine dependence (binary data), alcohol consumption (count data), and number of root-like structures in a model plant (count data). 
    more » « less
  2. Abstract Background Single marker analysis (SMA) with linear mixed models for genome wide association studies has uncovered the contribution of genetic variants to many observed phenotypes. However, SMA has weak false discovery control. In addition, when a few variants have large effect sizes, SMA has low statistical power to detect small and medium effect sizes, leading to low recall of true causal single nucleotide polymorphisms (SNPs). Results We present the Bayesian Iterative Conditional Stochastic Search (BICOSS) method that controls false discovery rate and increases recall of variants with small and medium effect sizes. BICOSS iterates between a screening step and a Bayesian model selection step. A simulation study shows that, when compared to SMA, BICOSS dramatically reduces false discovery rate and allows for smaller effect sizes to be discovered. Finally, two real world applications show the utility and flexibility of BICOSS. Conclusions When compared to widely used SMA, BICOSS provides higher recall of true SNPs while dramatically reducing false discovery rate. 
    more » « less
  3. Marschall, Tobias (Ed.)
    Abstract MotivationIn a genome-wide association study, analyzing multiple correlated traits simultaneously is potentially superior to analyzing the traits one by one. Standard methods for multivariate genome-wide association study operate marker-by-marker and are computationally intensive. ResultsWe present a sparsity constrained regression algorithm for multivariate genome-wide association study based on iterative hard thresholding and implement it in a convenient Julia package MendelIHT.jl. In simulation studies with up to 100 quantitative traits, iterative hard thresholding exhibits similar true positive rates, smaller false positive rates, and faster execution times than GEMMA’s linear mixed models and mv-PLINK’s canonical correlation analysis. On UK Biobank data with 470 228 variants, MendelIHT completed a three-trait joint analysis (n=185 656) in 20 h and an 18-trait joint analysis (n=104 264) in 53 h with an 80 GB memory footprint. In short, MendelIHT enables geneticists to fit a single regression model that simultaneously considers the effect of all SNPs and dozens of traits. Availability and implementationSoftware, documentation, and scripts to reproduce our results are available from https://github.com/OpenMendel/MendelIHT.jl. 
    more » « less
  4. null (Ed.)
    Summary In recent biomedical research, genome-wide association studies (GWAS) have demonstrated great success in investigating the genetic architecture of human diseases. For many complex diseases, multiple correlated traits have been collected. However, most of the existing GWAS are still limited because they analyze each trait separately without considering their correlations and suffer from a lack of sufficient information. Moreover, the high dimensionality of single nucleotide polymorphism (SNP) data still poses tremendous challenges to statistical methods, in both theoretical and practical aspects. In this article, we innovatively propose an integrative functional linear model for GWAS with multiple traits. This study is the first to approximate SNPs as functional objects in a joint model of multiple traits with penalization techniques. It effectively accommodates the high dimensionality of SNPs and correlations among multiple traits to facilitate information borrowing. Our extensive simulation studies demonstrate the satisfactory performance of the proposed method in the identification and estimation of disease-associated genetic variants, compared to four alternatives. The analysis of type 2 diabetes data leads to biologically meaningful findings with good prediction accuracy and selection stability. 
    more » « less
  5. ABSTRACT Genome-wide association studies (GWAS) can identify genetic variants responsible for naturally occurring and quantitative phenotypic variation. Association studies therefore provide a powerful complement to approaches that rely on de novo mutations for characterizing gene function. Although bacteria should be amenable to GWAS, few GWAS have been conducted on bacteria, and the extent to which nonindependence among genomic variants (e.g., linkage disequilibrium [LD]) and the genetic architecture of phenotypic traits will affect GWAS performance is unclear. We apply association analyses to identify candidate genes underlying variation in 20 biochemical, growth, and symbiotic phenotypes among 153 strains of Ensifer meliloti . For 11 traits, we find genotype-phenotype associations that are stronger than expected by chance, with the candidates in relatively small linkage groups, indicating that LD does not preclude resolving association candidates to relatively small genomic regions. The significant candidates show an enrichment for nucleotide polymorphisms (SNPs) over gene presence-absence variation (PAV), and for five traits, candidates are enriched in large linkage groups, a possible signature of epistasis. Many of the variants most strongly associated with symbiosis phenotypes were in genes previously identified as being involved in nitrogen fixation or nodulation. For other traits, apparently strong associations were not stronger than the range of associations detected in permuted data. In sum, our data show that GWAS in bacteria may be a powerful tool for characterizing genetic architecture and identifying genes responsible for phenotypic variation. However, careful evaluation of candidates is necessary to avoid false signals of association. IMPORTANCE Genome-wide association analyses are a powerful approach for identifying gene function. These analyses are becoming commonplace in studies of humans, domesticated animals, and crop plants but have rarely been conducted in bacteria. We applied association analyses to 20 traits measured in Ensifer meliloti , an agriculturally and ecologically important bacterium because it fixes nitrogen when in symbiosis with leguminous plants. We identified candidate alleles and gene presence-absence variants underlying variation in symbiosis traits, antibiotic resistance, and use of various carbon sources; some of these candidates are in genes previously known to affect these traits whereas others were in genes that have not been well characterized. Our results point to the potential power of association analyses in bacteria, but also to the need to carefully evaluate the potential for false associations. 
    more » « less