Abstract Variational quantum algorithms have the potential for significant impact on high-dimensional optimization, with applications in classical combinatorics, quantum chemistry, and condensed matter. Nevertheless, the optimization landscape of these algorithms is generally nonconvex, leading the algorithms to converge to local, rather than global, minima and the production of suboptimal solutions. In this work, we introduce a variational quantum algorithm that couples classical Markov chain Monte Carlo techniques with variational quantum algorithms, allowing the former to provably converge to global minima and thus assure solution quality. Due to the generality of our approach, it is suitable for a myriad of quantum minimization problems, including optimization and quantum state preparation. Specifically, we devise a Metropolis–Hastings method that is suitable for variational quantum devices and use it, in conjunction with quantum optimization, to construct quantum ensembles that converge to Gibbs states. These performance guarantees are derived from the ergodicity of our algorithm’s state space and enable us to place analytic bounds on its time-complexity. We demonstrate both the effectiveness of our technique and the validity of our analysis through quantum circuit simulations for MaxCut instances, solving these problems deterministically and with perfect accuracy, as well as large-scale quantum Ising and transverse field spin models of up to 50 qubits. Our technique stands to broadly enrich the field of variational quantum algorithms, improving and guaranteeing the performance of these promising, yet often heuristic, methods.
more »
« less
Systematic improvement of neural network quantum states using Lanczos
The quantum many-body problem lies at the center of the most important open challenges in condensed matter, quantum chemistry, atomic, nuclear, and high-energy physics. While quantum Monte Carlo, when applicable, remains the most powerful numerical technique capable of treating dozens or hundreds of degrees of freedom with high accuracy, it is restricted to models that are not afflicted by the infamous sign problem. A powerful alternative that has emerged in recent years is the use of neural networks as variational estimators for quantum states. In this work, we propose a symmetry-projected variational solution in the form of linear combinations of simple restricted Boltzmann machines. This construction allows one to explore states outside of the original variational manifold and increase the representation power with moderate computational effort. Besides allowing one to restore spatial symmetries, an expansion in terms of Krylov states using a Lanczos recursion offers a solution that can further improve the quantum state accuracy. We illustrate these ideas with an application to the Heisenberg J1−J2 model on the square lattice, a paradigmatic problem under debate in condensed matter physics, and achieve state-of-the-art accuracy in the representation of the ground state.
more »
« less
- Award ID(s):
- 2120501
- PAR ID:
- 10413834
- Editor(s):
- Koyejo, S.; Mohamed, S.; Agarwal, A.; Belgrave, D.; Cho, K.; Oh, A.
- Date Published:
- Journal Name:
- Advances in Neural Information Processing Systems
- Volume:
- 35
- Page Range / eLocation ID:
- 7490--7503
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Finite-temperature phases of many-body quantum systems are fundamental to phenomena ranging from condensed-matter physics to cosmology, yet they are generally difficult to simulate. Using an ion trap quantum computer and protocols motivated by the quantum approximate optimization algorithm (QAOA), we generate nontrivial thermal quantum states of the transverse-field Ising model (TFIM) by preparing thermofield double states at a variety of temperatures. We also prepare the critical state of the TFIM at zero temperature using quantum–classical hybrid optimization. The entanglement structure of thermofield double and critical states plays a key role in the study of black holes, and our work simulates such nontrivial structures on a quantum computer. Moreover, we find that the variational quantum circuits exhibit noise thresholds above which the lowest-depth QAOA circuits provide the best results.more » « less
-
null (Ed.)The variational quantum eigensolver has been proposed as a low-depth quantum circuit that can be employed to examine strongly correlated systems on today’s noisy intermediate-scale quantum computers. We examine details associated with the factorized form of the unitary coupled-cluster variant of this algorithm. We apply it to a simple strongly correlated condensed-matter system with nontrivial behavior — the four-site Hubbard model at half-filling. This work show some of the subtle issues one needs to take into account when applying this algorithm in practice, especially to condensed-matter systems.more » « less
-
Since the notion of topological insulator (TI) was envisioned in late 2000s, topology has become a new paradigm in condensed matter physics. Realization of topology as a generic property of materials has led to numerous predictions of topological effects. Although most of the classical topological effects, directly resulting from the presence of the spin-momentum-locked topological surface states (TSS), were experimentally confirmed soon after the theoretical prediction of TIs, many topological quantum effects remained elusive for a long while. It turns out that native defects, particularly interfacial defects, have been the main culprit behind this impasse. Even after quantum regime is achieved for the bulk states, TSS still tends to remain in the classical regime due to high density of interfacial defects, which frequently donate mobile carriers due to the very nature of the topologically-protected surface states. However, with several defect engineering schemes that suppress these effects, a series of topological quantum effects have emerged including quantum anomalous Hall effect, quantum Hall effect, quantized Faraday/Kerr rotations, topological quantum phase transitions, axion insulating state, zeroth-Landau level state, etc. Here, we review how these defect engineering schemes have allowed topological surface states to pull out of the murky classical regime and reveal their elusive quantum signatures, over the past decade.more » « less
-
INTRODUCTION Solving quantum many-body problems, such as finding ground states of quantum systems, has far-reaching consequences for physics, materials science, and chemistry. Classical computers have facilitated many profound advances in science and technology, but they often struggle to solve such problems. Scalable, fault-tolerant quantum computers will be able to solve a broad array of quantum problems but are unlikely to be available for years to come. Meanwhile, how can we best exploit our powerful classical computers to advance our understanding of complex quantum systems? Recently, classical machine learning (ML) techniques have been adapted to investigate problems in quantum many-body physics. So far, these approaches are mostly heuristic, reflecting the general paucity of rigorous theory in ML. Although they have been shown to be effective in some intermediate-size experiments, these methods are generally not backed by convincing theoretical arguments to ensure good performance. RATIONALE A central question is whether classical ML algorithms can provably outperform non-ML algorithms in challenging quantum many-body problems. We provide a concrete answer by devising and analyzing classical ML algorithms for predicting the properties of ground states of quantum systems. We prove that these ML algorithms can efficiently and accurately predict ground-state properties of gapped local Hamiltonians, after learning from data obtained by measuring other ground states in the same quantum phase of matter. Furthermore, under a widely accepted complexity-theoretic conjecture, we prove that no efficient classical algorithm that does not learn from data can achieve the same prediction guarantee. By generalizing from experimental data, ML algorithms can solve quantum many-body problems that could not be solved efficiently without access to experimental data. RESULTS We consider a family of gapped local quantum Hamiltonians, where the Hamiltonian H ( x ) depends smoothly on m parameters (denoted by x ). The ML algorithm learns from a set of training data consisting of sampled values of x , each accompanied by a classical representation of the ground state of H ( x ). These training data could be obtained from either classical simulations or quantum experiments. During the prediction phase, the ML algorithm predicts a classical representation of ground states for Hamiltonians different from those in the training data; ground-state properties can then be estimated using the predicted classical representation. Specifically, our classical ML algorithm predicts expectation values of products of local observables in the ground state, with a small error when averaged over the value of x . The run time of the algorithm and the amount of training data required both scale polynomially in m and linearly in the size of the quantum system. Our proof of this result builds on recent developments in quantum information theory, computational learning theory, and condensed matter theory. Furthermore, under the widely accepted conjecture that nondeterministic polynomial-time (NP)–complete problems cannot be solved in randomized polynomial time, we prove that no polynomial-time classical algorithm that does not learn from data can match the prediction performance achieved by the ML algorithm. In a related contribution using similar proof techniques, we show that classical ML algorithms can efficiently learn how to classify quantum phases of matter. In this scenario, the training data consist of classical representations of quantum states, where each state carries a label indicating whether it belongs to phase A or phase B . The ML algorithm then predicts the phase label for quantum states that were not encountered during training. The classical ML algorithm not only classifies phases accurately, but also constructs an explicit classifying function. Numerical experiments verify that our proposed ML algorithms work well in a variety of scenarios, including Rydberg atom systems, two-dimensional random Heisenberg models, symmetry-protected topological phases, and topologically ordered phases. CONCLUSION We have rigorously established that classical ML algorithms, informed by data collected in physical experiments, can effectively address some quantum many-body problems. These rigorous results boost our hopes that classical ML trained on experimental data can solve practical problems in chemistry and materials science that would be too hard to solve using classical processing alone. Our arguments build on the concept of a succinct classical representation of quantum states derived from randomized Pauli measurements. Although some quantum devices lack the local control needed to perform such measurements, we expect that other classical representations could be exploited by classical ML with similarly powerful results. How can we make use of accessible measurement data to predict properties reliably? Answering such questions will expand the reach of near-term quantum platforms. Classical algorithms for quantum many-body problems. Classical ML algorithms learn from training data, obtained from either classical simulations or quantum experiments. Then, the ML algorithm produces a classical representation for the ground state of a physical system that was not encountered during training. Classical algorithms that do not learn from data may require substantially longer computation time to achieve the same task.more » « less
An official website of the United States government

