skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Shaping a Soft Future: Patterning Liquid Metals
Abstract This review highlights the unique techniques for patterning liquid metals containing gallium (e.g., eutectic gallium indium, EGaIn). These techniques are enabled by two unique attributes of these liquids relative to solid metals: 1) The fluidity of the metal allows it to be injected, sprayed, and generally dispensed. 2) The solid native oxide shell allows the metal to adhere to surfaces and be shaped in ways that would normally be prohibited due to surface tension. The ability to shape liquid metals into non‐spherical structures such as wires, antennas, and electrodes can enable fluidic metallic conductors for stretchable electronics, soft robotics, e‐skins, and wearables. The key properties of these metals with a focus on methods to pattern liquid metals into soft or stretchable devices are summari.  more » « less
Award ID(s):
1841466 2032409
PAR ID:
10413941
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
35
Issue:
19
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Liquid metals, such as Gallium‐based alloys, have unique mechanical and electrical properties because they behave like liquid at room temperature. These properties make liquid metals favorable for soft electronics and stretchable conductors. In addition, these metals spontaneously form a thin oxide layer on their surface. Applications made possible by this delicate oxide skin include shape reconfigurable electronics, 3D‐printed structures, and unconventional actuators. This paper introduces a new approach where liquid metal oxide serves as an electrochemical energy source. By mechanically rupturing their surface oxide, liquid metals form a galvanic cell and convert their chemical energy to electrical energy. When dispersing liquid metals into an ionically‐conductive liquid to form emulsions, this composite material can provide ∼500 mV of open‐circuit voltage and up to ∼4 μWof power. Protected by the naturally occurring oxide skin, the passivating oxide layer of the liquid metal shields it from self‐discharge over time. The device is also stable in harsh environments, such as high temperature or aquatic conditions. Future applications of this device are demonstrated by designing a strain‐activated stretchable battery and a pressure‐sensitive self‐powered keypad. These findings may unlock new pathways to design stretchable batteries and harness their inherent energy for self‐powered robust devices. 
    more » « less
  2. Abstract Liquid metals (LMs) have compelling applications in stretchable electronics, wearable devices, and soft robotics ascribing to the unique combination of room temperature fluidity and metallic electrical/thermal conductivity. Adding metallic elements in gallium‐based LMs can produce heterophasic (i.e., solid and liquid) LMs with altered properties including morphology, surface energy, rheology, electrical/thermal conductivity, and chemical reactivity. Importantly, heterophasic LMs can respond to external stimuli such as magnetic fields, temperature, and force. Thus, heterophasic LMs can broaden the potential applications of LMs. This report reviews the recent progress about heterophasic LMs through metallic elements in the periodic table and discusses their functionalities. The heterophasic LMs are systematically organized into four categories based on their features and applications including electrical/thermal conductivity, magnetic property, catalysis/energy management, and biomedical applications. This comprehensive review is aimed to help summarize the field and identify new opportunities for future studies. 
    more » « less
  3. Liquid metals such as gallium alloys have a unique potential to enable fully reconfigurable RF electronics. One of the major concerns for liquid-metal electronics is their interaction with solid-metal contacts, which results in unwanted changes to electrical performance and delamination of solid-metal contacts due to atomic diffusion of gallium at the liquid/solid interface. In this paper, we present a solution to this problem through way of liquid-metal/liquid-metal RF connections by implementing Laplace barriers, which control fluid flow and position via pressure-sensitive thresholds to facilitate physical movement of the fluids within the channels. We demonstrate RF switching within the channel systems by fabricating, testing, and modeling a reconfigurable RF microstrip transmission line with integrated Laplace barriers which operates between 0.5–5 GHz. This approach opens the potential for future all-liquid reconfigurable RF electronic circuits where physical connections between solid and liquid metals are minimized or possibly eliminated altogether. 
    more » « less
  4. null (Ed.)
    Gallium based liquid metals (LM) have prospective biomedical, stretchable electronics, soft robotics, and energy storage applications, and are being widely adopted as thermal interface materials. The danger of gallium corroding most metals used in microelectronics requires the cumbersome addition of “barrier” layers or LM break-up into droplets within an inert matrix such as silicone oil. Such LM-in-oil emulsions are stabilized by native oxide on the droplets but have decreased thermal performance. Here we show that mixing of the silicone oil into an LM-air foam yields emulsions with inverted phases. We investigate the stability of these oil-in-LM emulsions through a range of processing times and oil viscosities, and characterize the impact of these parameters on the materials’ structure and thermal property relationships. We demonstrate that the emulsion with 40 vol% of 10 cSt silicone oil provides a unique thermal management material with a 10 W m −1 K −1 thermal conductivity and an exterior lubricant thin film that completely prevents corrosion of contacting aluminum. 
    more » « less
  5. Abstract As stretchable devices become well established for applications in soft robotics and wearable devices, the compliant conductors that make these applications possible must also be reliable and survive for the entire device lifetime. Liquid metals such as Galinstan are a potential solution as non‐toxic, stretchable, and low‐resistance conductors. Rigorous investigations of liquid metal lifetimes, however, are limited. This work presents the median lifetime of liquid metal‐filled silicone tubes under current density on the order of 1 kAcm−2, which is necessary for applications such as electromagnetic actuators. In these conductors, the median lifetime increases by a factor of over 4700 as current decreases from 2 to 1 kAcm−2. By cooling the sample, median failure time increases from 112 s to 9.4 h, which suggests straightforward solutions to maximize liquid metal wire lifetime by increasing thermal conductivity or by duty cycling the applied current. 
    more » « less