skip to main content


Title: Collective States of Active Particles With Elastic Dipolar Interactions
Many types of animal cells exert active, contractile forces and mechanically deform their elastic substrate, to accomplish biological functions such as migration. These substrate deformations provide a mechanism in principle by which cells may sense other cells, leading to long-range mechanical inter–cell interactions and possible self-organization. Here, inspired by cell mechanobiology, we propose an active matter model comprising self-propelling particles that interact at a distance through their mutual deformations of an elastic substrate. By combining a minimal model for the motility of individual particles with a linear elastic model that accounts for substrate-mediated, inter–particle interactions, we examine emergent collective states that result from the interplay of motility and long-range elastic dipolar interactions. In particular, we show that particles self-assemble into flexible, motile chains which can cluster to form diverse larger-scale compact structures with polar order. By computing key structural and dynamical metrics, we distinguish between the collective states at weak and strong elastic interaction strength, as well as at low and high motility. We also show how these states are affected by confinement within a channel geometry–an important characteristic of the complex mechanical micro-environment inhabited by cells. Our model predictions may be generally applicable to active matter with dipolar interactions ranging from biological cells to synthetic colloids endowed with electric or magnetic dipole moments.  more » « less
Award ID(s):
2112675 1547848
PAR ID:
10423438
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Frontiers in Physics
Volume:
10
ISSN:
2296-424X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The mechanical micro-environment of cells and tissues influences key aspects of cell structure and function, including cell motility. For proper tissue development, cells need to migrate, interact, and form contacts. Cells are known to exert contractile forces on underlying soft substrates and sense deformations in them. Here, we propose and analyze a minimal biophysical model for cell migration and long-range cell–cell interactions through mutual mechanical deformations of the substrate. We compute key metrics of cell motile behavior, such as the number of cell-cell contacts over a given time, the dispersion of cell trajectories, and the probability of permanent cell contact, and analyze how these depend on a cell motility parameter and substrate stiffness. Our results elucidate how cells may sense each other mechanically and generate coordinated movements and provide an extensible framework to further address both mechanical and short-range biophysical interactions. 
    more » « less
  2. null (Ed.)
    Many-body interactions in systems of active matter can cause particles to move collectively and self-organize into dynamic structures with long-range order. In cells, the self-assembly of cytoskeletal filaments is critical for cellular motility, structure, intracellular transport, and division. Semiflexible cytoskeletal filaments driven by polymerization or motor-protein interactions on a two-dimensional substrate, such as the cell cortex, can induce filament bending and curvature leading to interesting collective behavior. For example, the bacterial cell-division filament FtsZ is known to have intrinsic curvature that causes it to self-organize into rings and vortices, and recent experiments reconstituting the collective motion of microtubules driven by motor proteins on a surface have observed chiral symmetry breaking of the collective behavior due to motor-induced curvature of the filaments. Previous work on the self-organization of driven filament systems have not studied the effects of curvature and filament structure on collective behavior. In this work, we present Brownian dynamics simulation results of driven semiflexible filaments with intrinsic curvature and investigate how the interplay between filament rigidity and radius of curvature can tune the self-organization behavior in homochiral systems and heterochiral mixtures. We find a curvature-induced reorganization from polar flocks to self-sorted chiral clusters, which is modified by filament flexibility. This transition changes filament transport from ballistic to diffusive at long timescales. 
    more » « less
  3. null (Ed.)
    In active matter systems, self-propelled particles can self-organize to undergo collective motion, leading to persistent dynamical behavior out of equilibrium. In cells, cytoskeletal filaments and motor proteins form complex structures important for cell mechanics, motility, and division. Collective dynamics of cytoskeletal systems can be reconstituted using filament gliding experiments, in which cytoskeletal filaments are propelled by surface-bound motor proteins. These experiments have observed diverse dynamical states, including flocks, polar streams, swirling vortices, and single-filament spirals. Recent experiments with microtubules and kinesin motor proteins found that the collective behavior of gliding filaments can be tuned by altering the concentration of the crowding macromolecule methylcellulose in solution. Increasing the methylcellulose concentration reduced filament crossing, promoted alignment, and led to a transition from active, isotropically oriented filaments to locally aligned polar streams. This emergence of collective motion is typically explained as an increase in alignment interactions by Vicsek-type models of active polar particles. However, it is not yet understood how steric interactions and bending stiffness modify the collective behavior of active semiflexible filaments. Here we use simulations of driven filaments with tunable soft repulsion and rigidity in order to better understand how the interplay between filament flexibility and steric effects can lead to different active dynamic states. We find that increasing filament stiffness decreases the probability of filament alignment, yet increases collective motion and long-range order, in contrast to the assumptions of a Vicsek-type model. We identify swirling flocks, polar streams, buckling bands, and spirals, and describe the physics that govern transitions between these states. In addition to repulsion and driving, tuning filament stiffness can promote collective behavior, and controls the transition between active isotropic filaments, locally aligned flocks, and polar streams. 
    more » « less
  4. Cells self-organize into functional, ordered structures during tissue morphogenesis, a process that is evocative of colloidal self-assembly into engineered soft materials. Understanding how intercellular mechanical interactions may drive the formation of ordered and functional multicellular structures is important in developmental biology and tissue engineering. Here, by combining an agent-based model for contractile cells on elastic substrates with endothelial cell culture experiments, we show that substrate deformation–mediated mechanical interactions between cells can cluster and align them into branched networks. Motivated by the structure and function of vasculogenic networks, we predict how measures of network connectivity like percolation probability and fractal dimension as well as local morphological features including junctions, branches, and rings depend on cell contractility and density and on substrate elastic properties including stiffness and compressibility. We predict and confirm with experiments that cell network formation is substrate stiffness dependent, being optimal at intermediate stiffness. We also show the agreement between experimental data and predicted cell cluster types by mapping a combined phase diagram in cell density substrate stiffness. Overall, we show that long-range, mechanical interactions provide an optimal and general strategy for multicellular self-organization, leading to more robust and efficient realizations of space-spanning networks than through just local intercellular interactions.

     
    more » « less
  5. Abstract

    Autonomous motion and motility are hallmarks of active matter. Active agents, such as biological cells and synthetic colloidal particles, consume internal energy or extract energy from the environment to generate self-propulsion and locomotion. These systems are persistently out of equilibrium due to continuous energy consumption. It is known that pressure is not always a state function for generic active matter. Torque interaction between active constituents and confinement renders the pressure of the system a boundary-dependent property. The mechanical pressure of anisotropic active particles depends on their microscopic interactions with a solid wall. Using self-propelled dumbbells confined by solid walls as a model system, we perform numerical simulations to explore how variations in the wall stiffness influence the mechanical pressure of dry active matter. In contrast to previous findings, we find that mechanical pressure can be independent of the interaction of anisotropic active particles with walls, even in the presence of intrinsic torque interaction. Particularly, the dependency of pressure on the wall stiffness vanishes when the stiffness is above a critical level. In such a limit, the dynamics of dumbbells near the walls are randomized due to the large torque experienced by the dumbbells, leading to the recovery of pressure as a state variable of density.

     
    more » « less