skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stable Isomorphisms of Operator Algebras
Abstract Let $${{\mathcal{A}}}$$ and $${{\mathcal{B}}}$$ be operator algebras with $$c_{0}$$-isomorphic diagonals and let $${{\mathcal{K}}}$$ denote the compact operators. We show that if $${{\mathcal{A}}}\otimes{{\mathcal{K}}}$$ and $${{\mathcal{B}}}\otimes{{\mathcal{K}}}$$ are isometrically isomorphic, then $${{\mathcal{A}}}$$ and $${{\mathcal{B}}}$$ are isometrically isomorphic. If the algebras $${{\mathcal{A}}}$$ and $${{\mathcal{B}}}$$ satisfy an extra analyticity condition a similar result holds with $${{\mathcal{K}}}$$ being replaced by any operator algebra containing the compact operators. For nonselfadjoint graph algebras this implies that the graph is a complete invariant for various types of isomorphisms, including stable isomorphisms, thus strengthening a recent result of Dor-On, Eilers, and Geffen. Similar results are proven for algebras whose diagonals satisfy cancellation and have $$K_{0}$$-groups isomorphic to $${{\mathbb{Z}}}$$. This has implications in the study of stable isomorphisms between various semicrossed products.  more » « less
Award ID(s):
2054781
PAR ID:
10627846
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford Academic
Date Published:
Journal Name:
International Mathematics Research Notices
Volume:
2024
Issue:
5
ISSN:
1073-7928
Page Range / eLocation ID:
4094 to 4118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this article, we continue the study of a certain family of 2-Calabi–Yau tilted algebras, called dimer tree algebras. The terminology comes from the fact that these algebras can also be realized as quotients of dimer algebras on a disk. They are defined by a quiver with potential whose dual graph is a tree, and they are generally of wild representation type. Given such an algebra $$B$$, we construct a polygon $$\mathcal {S}$$ with a checkerboard pattern in its interior, which defines a category $$\text {Diag}(\mathcal {S})$$. The indecomposable objects of $$\text {Diag}(\mathcal {S})$$ are the 2-diagonals in $$\mathcal {S}$$, and its morphisms are certain pivoting moves between the 2-diagonals. We prove that the category $$\text {Diag}(\mathcal {S})$$ is equivalent to the stable syzygy category of the algebra $$B$$. This result was conjectured by the authors in an earlier paper, where it was proved in the special case where every chordless cycle is of length three. As a consequence, we conclude that the number of indecomposable syzygies is finite, and moreover the syzygy category is equivalent to the 2-cluster category of type $$\mathbb {A}$$. In addition, we obtain an explicit description of the projective resolutions, which are periodic. Finally, the number of vertices of the polygon $$\mathcal {S}$$ is a derived invariant and a singular invariant for dimer tree algebras, which can be easily computed form the quiver. 
    more » « less
  2. null (Ed.)
    Abstract The elliptic algebras in the title are connected graded $$\mathbb {C}$$ -algebras, denoted $$Q_{n,k}(E,\tau )$$ , depending on a pair of relatively prime integers $$n>k\ge 1$$ , an elliptic curve E and a point $$\tau \in E$$ . This paper examines a canonical homomorphism from $$Q_{n,k}(E,\tau )$$ to the twisted homogeneous coordinate ring $$B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$$ on the characteristic variety $$X_{n/k}$$ for $$Q_{n,k}(E,\tau )$$ . When $$X_{n/k}$$ is isomorphic to $E^g$ or the symmetric power $S^gE$ , we show that the homomorphism $$Q_{n,k}(E,\tau ) \to B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$$ is surjective, the relations for $$B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$$ are generated in degrees $$\le 3$$ and the noncommutative scheme $$\mathrm {Proj}_{nc}(Q_{n,k}(E,\tau ))$$ has a closed subvariety that is isomorphic to $E^g$ or $S^gE$ , respectively. When $$X_{n/k}=E^g$$ and $$\tau =0$$ , the results about $$B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$$ show that the morphism $$\Phi _{|\mathcal {L}_{n/k}|}:E^g \to \mathbb {P}^{n-1}$$ embeds $E^g$ as a projectively normal subvariety that is a scheme-theoretic intersection of quadric and cubic hypersurfaces. 
    more » « less
  3. Abstract We prove an inequality that unifies previous works of the authors on the properties of the Radon transform on convex bodies including an extension of the Busemann–Petty problem and a slicing inequality for arbitrary functions. Let $$K$$ and $$L$$ be star bodies in $${\mathbb R}^n,$$ let $0<k<n$ be an integer, and let $f,g$ be non-negative continuous functions on $$K$$ and $$L$$, respectively, so that $$\|g\|_\infty =g(0)=1.$$ Then $$\begin{align*} & \frac{\int_Kf}{\left(\int_L g\right)^{\frac{n-k}n}|K|^{\frac kn}} \le \frac n{n-k} \left(d_{\textrm{ovr}}(K,\mathcal{B}\mathcal{P}_k^n)\right)^k \max_{H} \frac{\int_{K\cap H} f}{\int_{L\cap H} g}, \end{align*}$$where $|K|$ stands for volume of proper dimension, $$C$$ is an absolute constant, the maximum is taken over all $(n-k)$-dimensional subspaces of $${\mathbb R}^n,$$ and $$d_{\textrm{ovr}}(K,\mathcal{B}\mathcal{P}_k^n)$$ is the outer volume ratio distance from $$K$$ to the class of generalized $$k$$-intersection bodies in $${\mathbb R}^n.$$ Another consequence of this result is a mean value inequality for the Radon transform. We also obtain a generalization of the isomorphic version of the Shephard problem. 
    more » « less
  4. Discrete and continuous frames can be considered as positive operator-valued measures (POVMs) that have integral representations using rank-one operators. However, not every POVM has an integral representation. One goal of this paper is to examine the POVMs that have finite-rank integral representations. More precisely, we present a necessary and sufficient condition under which a positive operator-valued measure $$F: \Omega \to B(H)$$ has an integral representation of the form $$F(E) =\sum_{k=1}^{m} \int_{E}\, G_{k}(\omega)\otimes G_{k}(\omega) d\mu(\omega)$$ for some weakly measurable maps $$G_{k} \ (1\leq k\leq m) $$ from a measurable space $$\Omega$$ to a Hilbert space $$\mathcal{H}$$ and some positive measure $$\mu$$ on $$\Omega$$. Similar characterizations are also obtained for projection-valued measures. As special consequences of our characterization we settle negatively a problem of Ehler and Okoudjou about probability frame representations of probability POVMs, and prove that an integral representable probability POVM can be dilated to a integral representable projection-valued measure if and only if the corresponding measure is purely atomic. 
    more » « less
  5. For a net of C*-algebras on a discrete metric space, we introduce a bimodule version of the DHR tensor category and show that it is an invariant of quasi-local algebras under isomorphisms with bounded spread. For abstract spin systems on a latticeL\subseteq \mathbb{R}^{n}satisfying a weak version of Haag duality, we construct a braiding on these categories. Applying the general theory to quasi-local algebrasAof operators on a lattice invariant under a (categorical) symmetry, we obtain a homomorphism from the group of symmetric QCA to\mathbf{Aut}_{\mathrm{br}}(\mathbf{DHR}(A)), containing symmetric finite-depth circuits in the kernel. For a spin chain with fusion categorical symmetry\mathcal{D}, we show that the DHR category of the quasi-local algebra of symmetric operators is equivalent to the Drinfeld center\mathcal{Z}(\mathcal{D}). We use this to show that, for the double spin-flip action\mathbb{Z}/2\mathbb{Z}\times \mathbb{Z}/2\mathbb{Z}\curvearrowright \mathbb{C}^{2}\otimes \mathbb{C}^{2}, the group of symmetric QCA modulo symmetric finite-depth circuits in 1D contains a copy ofS_{3}; hence, it is non-abelian, in contrast to the case with no symmetry. 
    more » « less