skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Framework for facilitating mangrove recovery after hurricanes on Caribbean islands
Mangrove ecosystems in the Caribbean are frequently exposed to hurricanes, leading to structural and regenerative change that elicit calls for recovery action. For those mangroves unaffected by human modifications, recovery can occur naturally. Indeed, observable natural recovery after hurricanes is the genesis of the “disturbance adaptation” classification for mangroves; while structural legacies exist, unaltered stands often regenerate and persist. However, among the >7,000 islands, islets, and cays that make up the Caribbean archipelago, coastal alterations to support development affect mechanisms for regeneration, sediment distribution, tidal water conveyance, and intertidal mangrove transgression, imposing sometimes insurmountable barriers to natural post-hurricane recovery. We use a case study approach to suggest that actions to facilitate recovery of mangroves on Caribbean islands (and similar settings globally) may be more effective when focusing on ameliorating preexisting anthropogenic stressors. Actions to clean debris, collect mangrove propagules, and plant seedlings are noble endeavors, but can be costly and fall short of achieving recovery goals in isolation without careful consideration of pre-hurricane stress. We update a procedural framework that considers six steps to implementing “Ecological Mangrove Restoration” (EMR), and we apply them specifically to hurricane recovery. If followed, EMR may expedite actions by suggesting immediate damage assessment focused on hydrogeomorphic mangrove type, hydrology, and previous anthropogenic (or natural) influence. Application of EMR may help to improve mangrove recovery success following catastrophic storms, and reduce guesswork, delays, and monetary inefficiencies. Key words: ecological mangrove restoration, EMR, genetic considerations, hydrogeomorphic type, regeneration, resiliency bottlenecks, tropical cyclones  more » « less
Award ID(s):
1946412
PAR ID:
10413983
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Restoration Ecology
ISSN:
1061-2971
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Hurricanes are among the most destructive natural disturbances in mangroves, altering community structure and ecological processes. Despite their impacts, few studies have assessed changes in belowground root processes (i.e., biomass, production, decomposition) following major hurricanes. Here, we quantified and compared changes in mangrove root processes in the Florida Coastal Everglades before (pre‐hurricane period: 2000–2004) and after post‐hurricane periods (post‐Wilma, May 2012; immediate‐post‐Irma, March 2018; post‐Irma, March 2023). We assessed spatiotemporal patterns in root dynamics across four mangrove sites (upstream, midstream, downstream, and estuary mouth) along a well‐defined soil phosphorus fertility gradient in the Shark River estuary. Root biomass carbon stocks were highest in the immediate‐post‐Irma and post‐Irma periods. The midstream site had the highest root C stocks, whereas the downstream site had the lowest across periods. Root size class distribution shifted considerably post‐hurricane, with fine roots accounting for 32% (post‐Wilma) to 66% (immediate‐post‐Irma and post‐Irma) of the total root C stocks across sites. However, root production did not vary among periods at any site, although estimates were higher midstream compared to upstream or downstream. Root total nitrogen and P were ~1.3 times higher in the post‐Irma period compared to other periods, with root P consistently increasing from upstream to the estuary mouth. Fine root turnover rates were lower post‐hurricane compared to pre‐hurricane across sites. Root decay rates declined post‐Irma at all sites, except at the midstream site. Our findings suggest that P‐rich sediments deposited by hurricanes can enhance belowground C allocation by increasing root biomass and nutrient uptake, while reducing root turnover to facilitate forest recovery. These responses underscore the strong phenotypic plasticity and resilience of mangrove roots in P‐limited carbonate settings, highlighting their critical role in C sequestration, resilience, and ecosystem stability as climate‐related disturbances and sea‐level rise intensify. 
    more » « less
  2. Hurricanes are recurring high-energy disturbances in coastal regions that change community structure and function of mangrove wetlands. However, most of the studies assessing hurricane impacts on mangroves have focused on negative effects without considering the positive influence of hurricane-induced sediment deposition and associated nutrient fertilization on mangrove productivity and resilience. Here, we quantified how Hurricane Irma influenced soil nutrient pools, vertical accretion, and plant phosphorus (P) uptake after its passage across the Florida Coastal Everglades in September 2017. Vertical accretion from Irma’s deposits was 6.7 to 14.4 times greater than the long-term (100 y) annual accretion rate (0.27 ± 0.04 cm y−1). Storm deposits extended up to 10-km inland from the Gulf of Mexico. Total P (TP) inputs were highest at the mouth of estuaries, with P concentration double that of underlying surface (top 10 cm) soils (0.19 ± 0.02 mg cm−3). This P deposition contributed 49 to 98% to the soil nutrient pool. As a result, all mangrove species showed a significant increase in litter foliar TP and soil porewater inorganic P concentrations in early 2018, 3 mo after Irma’s impact, thus underscoring the interspecies differences in nutrient uptake. Mean TP loading rates were five times greater in southwestern (94 ± 13 kg ha−1d−1) mangrove-dominated estuaries compared to the southeastern region, highlighting the positive role of hurricanes as a natural fertilization mechanism influencing forest productivity. P-rich, mineral sediments deposited by hurricanes create legacies that facilitate rapid forest recovery, stimulation of peat soil development, and resilience to sea-level rise. 
    more » « less
  3. ABSTRACT Mangrove forests are typically considered resilient to natural disturbances, likely caused by the evolutionary adaptation of species‐specific traits. These ecosystems play a vital role in the global carbon cycle and are responsible for an outsized contribution to carbon burial and enhanced sedimentation rates. Using eddy covariance data from two coastal mangrove forests in the Florida Coastal Everglades, we evaluated the impact hurricanes have on mangrove forest structure and function by measuring recovery to pre‐disturbance conditions following Hurricane Wilma in 2005 and Hurricane Irma in 2017. We determined the “recovery debt,” the deficit in ecosystem structure and function following a disturbance, using the leaf area index (LAI) and the net ecosystem exchange (NEE) of carbon dioxide (CO2). Calculated as the cumulative deviation from pre‐disturbance conditions, the recovery debt incorporated the recapture of all the carbon lost due to the disturbance. In Everglades mangrove forests, LAI returned to pre‐disturbance levels within a year, and ecosystem respiration and maximum photosynthetic rates took much longer, resulting in an initial recovery debt of 178 g C m−2at the tall forest with limited impacts at the scrub forest. At the landscape scale, the initial recovery debt was 0.40 Mt C, and in most coastal mangrove forests, all lost carbon was recovered within just 4 years. While high‐intensity storms could have prolonged impacts on the structure of subtropical forests, fast canopy recovery suggests these ecosystems will remain strong carbon sinks. 
    more » « less
  4. The capacity of coastal wetlands to stabilize shorelines and reduce erosion is a critical ecosystem service, and it is uncertain how changes in dominant vegetation may affect coastal protection. As part of a long-term study (2012–present) comparing ecosystem functions of marsh and black mangrove vegetation, we have experimentally maintained marsh and black mangrove patches (3 m × 3 m) along a plot-level (24 m × 42 m) gradient of marsh and mangrove cover in coastal wetlands near Port Aransas, TX. In August 2017, this experiment was directly in the path of Hurricane Harvey, a category 4 storm. This extreme disturbance event provided an opportunity to quantify differences in resistance between mangrove and marsh vegetation and to assess which vegetation type provided better shoreline protection against storm-driven erosion. We compared changes in plant cover, shoreline erosion, and accreted soil depth to values measured prior to storm landfall. Relative mangrove cover decreased 25–40% after the storm, regardless of initial cover, largely due to damage on taller mangroves (> 2.5 m height) that were not fully inundated by storm surge and were therefore exposed to strong winds. Evidence of regrowth on damaged mangrove branches was apparent within 2 months of landfall. Hurricane-induced decreases in mangrove cover were partially ameliorated by the presence of neighboring mangroves, particularly closer to the shoreline. Marsh plants were generally resistant to hurricane effects. Shoreline erosion exceeded 5 m where mangroves were absent (100% marsh cover) but was relatively modest (< 0.5 m) in plots with mangroves present (11–100% mangrove cover). Storm-driven accreted soil depth was variable but more than 2× higher in marsh patches than in mangrove patches. In general, mangroves provided shoreline protection from erosion but were also more damaged by wind and surge, which may reduce their shoreline protection capacity over longer time scales. 
    more » « less
  5. The capacity of coastal wetlands to stabilize shorelines and reduce erosion is a critical ecosystem service, and it is uncertain how changes in dominant vegetation may affect coastal protection. As part of a long-term study (2012–present) comparing ecosystem functions of marsh and black mangrove vegetation, we have experimentally maintained marsh and black mangrove patches (3 m × 3 m) along a plot-level (24 m × 42 m) gradient of marsh and mangrove cover in coastal wetlands near Port Aransas, TX. In August 2017, this experiment was directly in the path of Hurricane Harvey, a category 4 storm. This extreme disturbance event provided an opportunity to quantify differences in resistance between mangrove and marsh vegetation and to assess which vegetation type provided better shoreline protection against storm-driven erosion. We compared changes in plant cover, shoreline erosion, and accreted soil depth to values measured prior to storm landfall. Relative mangrove cover decreased 25–40% after the storm, regardless of initial cover, largely due to damage on taller mangroves (> 2.5 m height) that were not fully inundated by storm surge and were therefore exposed to strong winds. Evidence of regrowth on damaged mangrove branches was apparent within 2 months of landfall. Hurricane-induced decreases in mangrove cover were partially ameliorated by the presence of neighboring mangroves, particularly closer to the shoreline. Marsh plants were generally resistant to hurricane effects. Shoreline erosion exceeded 5 m where mangroves were absent (100% marsh cover) but was relatively modest (< 0.5 m) in plots with mangroves present (11–100% mangrove cover). Storm-driven accreted soil depth was variable but more than 2× higher in marsh patches than in mangrove patches. In general, mangroves provided shoreline protection from erosion but were also more damaged by wind and surge, which may reduce their shoreline protection capacity over longer time scales. 
    more » « less