skip to main content


Title: Spatial-Temporal Deep Learning for Hosting Capacity Analysis in Distribution Grids
The widespread use of distributed energy sources (DERs) raises significant challenges for power system design, planning, and operation, leading to wide adaptation of tools on hosting capacity analysis (HCA). Traditional HCA methods conduct extensive power flow analysis. Due to the computation burden, these time-consuming methods fail to provide online hosting capacity (HC) in large distribution systems. To solve the problem, we first propose a deep learning-based problem formulation for HCA, which conducts offline training and determines HC in real time. The used learning model, long short-term memory (LSTM), implements historical time-series data to capture periodical patterns in distribution systems. However, directly applying LSTMs suffers from low accuracy due to the lack of consideration on spatial information, where location information like feeder topology is critical in nodal HCA. Therefore, we modify the forget gate function to dual forget gates, to capture the spatial correlation within the grid. Such a design turns the LSTM into the Spatial-Temporal LSTM (ST-LSTM). Moreover, as voltage violations are the most vital constraints in HCA, we design a voltage sensitivity gate to increase accuracy further. The results of LSTMs and ST-LSTMs on feeders, such as IEEE 34-, 123-bus feeders, and utility feeders, validate our designs.  more » « less
Award ID(s):
2048288
NSF-PAR ID:
10482103
Author(s) / Creator(s):
; ; ;
Corporate Creator(s):
Publisher / Repository:
IEEE Transactions on Smart Grid
Date Published:
Journal Name:
IEEE Transactions on Smart Grid
Volume:
14
Issue:
1
ISSN:
1949-3053
Page Range / eLocation ID:
354 to 364
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Solar hosting capacity analysis (HCA) assesses the ability of a distribution network to host distributed solar generation without seriously violating distribution network constraints. In this paper, we consider risk-sensitive HCA that limits the risk of network constraint violations with a collection of scenarios of solar irradiance and nodal power demands, where risk is modeled via the conditional value at risk (CVaR) measure. First, we consider the question of maximizing aggregate installed solar capacities, subject to risk constraints and solve it as a second-order cone program (SOCP) with a standard conic relaxation of the feasible set of the power flow equations. Second, we design an incremental algorithm to decide whether a configuration of solar installations has acceptable risk of constraint violations, modeled via CVaR. The algorithm circumvents explicit risk computation by incrementally constructing inner and outer polyhedral approximations of the set of acceptable solar installation configurations from prior such tests conducted. Our numerical examples study the impact of risk parameters, the number of scenarios and the scalability of our framework. 
    more » « less
  2. Abstract

    A distribution transformer's thermal operating conditions can impose a limitation on the Hosting Capacity (HC) of an electrical distribution feeder for PV interconnections in the feeder's low‐voltage network. This is undesirable as it curtails PV interconnection of both residential and commercial customers in the secondary networks at a time when there are record numbers of interconnection requests by utilities' customers. The authors analyse the limitations on HC due to transformer loading and degradation considerations. Then, the paper proposes a battery energy storage system (BESS) dispatch strategy that will mitigate the limitation on distribution feeder HC by distribution transformers. Three scenarios of HC were simulated for a test network—HC evaluation without restrictions by the distribution transformer (scenario 1), HC evaluation with restrictions by the distribution transformer (scenario 2), and HC evaluation without restriction by the distribution transformer, and with the implementation of the proposed BESS mitigation strategy (scenario 3). Simulation results show that transformer lifetime is depleted to about 6% of expected lifetime for unrestricted HC in scenario 1. Curtailing the HC by 32% in scenario 2 improves the lifetime to 149% of expected lifetime. Implementing the proposed BESS in scenario 3 improves the transformer lifetime to 127% and increases the HC by 62% above the curtailed value in scenario 2, and by 10% above the original HC in scenario 1. The BESS strategy implementation produced cost savings of 49% and 27% of the transformer cost in scenarios 2 and 3, respectively, due to deferred transformer replacement. Conversely, there is a 1600% replacement cost incurred in scenario 1, which underscores the need for a mitigation strategy. The proposed BESS strategy does not only improve the HC of a distribution feeder but also increases a distribution transformer's lifetime leading to replacement cost savings.

     
    more » « less
  3. Deep reinforcement learning approaches are becoming appealing for the design of nonlinear controllers for voltage control problems, but the lack of stability guarantees hinders their real-world deployment. This letter constructs a decentralized RL-based controller for inverter-based real-time voltage control in distribution systems. It features two components: a transient control policy and a steady-state performance optimizer. The transient policy is parameterized as a neural network, and the steady-state optimizer represents the gradient of the long-term operating cost function. The two parts are synthesized through a safe gradient flow framework, which prevents the violation of reactive power capacity constraints. We prove that if the output of the transient controller is bounded and monotonically decreasing with respect to its input, then the closed-loop system is asymptotically stable and converges to the optimal steady-state solution. We demonstrate the effectiveness of our method by conducting experiments with IEEE 13-bus and 123-bus distribution system test feeders. 
    more » « less
  4. With the proliferation of distributed energy resources (DERs) in the distribution grid, it is a challenge to effectively control a large number of DERs resilient to the communication and security disruptions, as well as to provide the online grid services, such as voltage regulation and virtual power plant (VPP) dispatch. To this end, a hybrid feedback-based optimization algorithm along with deep learning forecasting technique is proposed to specifically address the cyber-related issues. The online decentralized feedback-based DER optimization control requires timely, accurate voltage measurement from the grid. However, in practice such information may not be received by the control center or even be corrupted. Therefore, the long short-term memory (LSTM) deep learning algorithm is employed to forecast delayed/missed/attacked messages with high accuracy. The IEEE 37-node feeder with high penetration of PV systems is used to validate the efficiency of the proposed hybrid algorithm. The results show that 1) the LSTM-forecasted lost voltage can effectively improve the performance of the DER control algorithm in the practical cyber-physical architecture; and 2) the LSTM forecasting strategy outperforms other strategies of using previous message and skipping dual parameter update. 
    more » « less
  5. Speech activity detection (SAD) is a key pre-processing step for a speech-based system. The performance of conventional audio-only SAD (A-SAD) systems is impaired by acoustic noise when they are used in practical applications. An alternative approach to address this problem is to include visual information, creating audiovisual speech activity detection (AV-SAD) solutions. In our previous work, we proposed to build an AV-SAD system using bimodal recurrent neural network (BRNN). This framework was able to capture the task-related characteristics in the audio and visual inputs, and model the temporal information within and across modalities. The approach relied on long short-term memory (LSTM). Although LSTM can model longer temporal dependencies with the cells, the effective memory of the units is limited to a few frames, since the recurrent connection only considers the previous frame. For SAD systems, it is important to model longer temporal dependencies to capture the semi-periodic nature of speech conveyed in acoustic and orofacial features. This study proposes to implement a BRNN-based AV-SAD system with advanced LSTMs (A-LSTMs), which overcomes this limitation by including multiple connections to frames in the past. The results show that the proposed framework can significantly outperform the BRNN system trained with the original LSTM layers. 
    more » « less