skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lower Bounds on Implementing Mediators in Asynchronous Systems with Rational and Malicious Agents
Abraham, Dolev, Geffner, and Halpern [ 1 ] proved that, in asynchronous systems, a (k, t)-robust equilibrium for n players and a trusted mediator can be implemented without the mediator as long as n > 4( k+t ), where an equilibrium is ( k, t )-robust if, roughly speaking, no coalition of t players can decrease the payoff of any of the other players, and no coalition of k players can increase their payoff by deviating. We prove that this bound is tight, in the sense that if n ≤ 4( k+t ) there exist ( k, t )-robust equilibria with a mediator that cannot be implemented by the players alone. Even though implementing ( k, t )-robust mediators seems closely related to implementing asynchronous multiparty ( k+t )-secure computation [ 6 ], to the best of our knowledge there is no known straightforward reduction from one problem to another. Nevertheless, we show that there is a non-trivial reduction from a slightly weaker notion of ( k+t )-secure computation, which we call ( k+t )-strict secure computation , to implementing ( k, t )-robust mediators. We prove the desired lower bound by showing that there are functions on n variables that cannot be ( k+t )-strictly securely computed if n ≤ 4( k+t ). This also provides a simple alternative proof for the well-known lower bound of 4 t +1 on asynchronous secure computation in the presence of up to t malicious agents [ 4 , 8 , 10 ].  more » « less
Award ID(s):
1703846
PAR ID:
10414134
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of the ACM
Volume:
70
Issue:
2
ISSN:
0004-5411
Page Range / eLocation ID:
1 to 21
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Secure function computation has been thoroughly studied and optimized in the past decades. We extend techniques used for secure computation to simulate arbitrary protocols involving a mediator. The key feature of our notion of simulation is that it is bidirectional: not only does the simulation produce only outputs that could happen in the original protocol, but the simulation produces all such outputs. In asynchronous systems there are also new subtleties that arise because the scheduler can influence the output. Thus, these requirements cannot be achieved by the standard notion of secure computation. We provide a construction that is secure if n > 4t, where t is the number of malicious agents, which is provably the best possible. We also show that our construction is secure in the universal composability model and that it satisfies additional security properties even if 3t < n \le 4t. 
    more » « less
  2. A mediator can help non-cooperative agents obtain an equilibrium that may otherwise not be possible. We study the ability of players to obtain the same equilibrium without a mediator, using only cheap talk, that is, nonbinding pre-play communication. Previous work has considered this problem in a synchronous setting. Here we consider the effect of asynchrony on the problem, and provide upper bounds for implementing mediators. Considering asynchronous environments introduces new subtleties, including exactly what solution concept is most appropriate and determining what move is played if the cheap talk goes on forever. Different results are obtained depending on whether the move after such ``infinite play'' is under the control of the players or part of the description of the game. 
    more » « less
  3. We consider computational games, sequences of games G = (G1,G2,...) where, for all n, Gn has the same set of players. Computational games arise in electronic money systems such as Bitcoin, in cryptographic protocols, and in the study of generative adversarial networks in machine learning. Assuming that one-way functions exist, we prove that there is 2-player zero-sum computational game G such that, for all n, the size of the action space in Gn is polynomial in n and the utility function in Gn is computable in time polynomial in n, and yet there is no ε-Nash equilibrium if players are restricted to using strategies computable by polynomial-time Turing machines, where we use a notion of Nash equilibrium that is tailored to computational games. We also show that an ε-Nash equilibrium may not exist if players are constrained to perform at most T computational steps in each of the games in the sequence. On the other hand, we show that if players can use arbitrary Turing machines to compute their strategies, then every computational game has an ε-Nash equilibrium. These results may shed light on competitive settings where the availability of more running time or faster algorithms can lead to a “computational arms race”, precluding the existence of equilibrium. They also point to inherent limitations of concepts such as “best response” and Nash equilibrium in games with resource-bounded players. 
    more » « less
  4. A mediator observes no-regret learners playing an extensive-form game repeatedly across T rounds. The mediator attempts to steer players toward some desirable predetermined equilibrium by giving (nonnegative) payments to players. We call this the steering problem. The steering problem captures problems several problems of interest, among them equilibrium selection and information design (persuasion). If the mediator’s budget is unbounded, steering is trivial because the mediator can simply pay the players to play desirable actions. We study two bounds on the mediator’s payments: a total budget and a per-round budget. If the mediator’s total budget does not grow with T, we show that steering is impossible. However, we show that it is enough for the total budget to grow sublinearly with T, that is, for the average payment to vanish. When players’ full strategies are observed at each round, we show that constant per-round budgets permit steering. In the more challenging setting where only trajectories through the game tree are observable, we show that steering is impossible with constant per-round budgets in general extensive-form games, but possible in normal-form games or if the per-round budget may itself depend on T. We also show how our results can be generalized to the case when the equilibrium is being computed online while steering is happening. We supplement our theoretical positive results with experiments highlighting the efficacy of steering in large games. 
    more » « less
  5. In this paper, we develop distributed computation algorithms for Nash equilibriums of linear quadratic network games with proven differential privacy guarantees. In a network game with each player's payoff being a quadratic function, the dependencies of the decisions in the payoff function naturally encode a network structure governing the players' inter-personal influences. Such social influence structure and the individual marginal payoffs of the players indicate economic spillovers and individual preferences, and thus they are subject to privacy concerns. For distributed computing of the Nash equilibrium, the players are interconnected by a public communication graph, over which dynamical states are shared among neighboring nodes. When the players' marginal payoffs are considered to be private knowledge, we propose a distributed randomized gradient descent algorithm, in which each player adds a Laplacian random noise to her marginal payoff in the recursive updates. It is proven that the algorithm can guarantee differential privacy and convergence in expectation to the Nash equilibrium of the network game at each player's state. Moreover, the mean-square error between the players' states and the Nash equilibrium is shown to be bounded by a constant related to the differential privacy level. Next, when both the players' marginal payoffs and the influence graph are private information, we propose two distributed algorithms by randomized communication and randomized projection, respectively, for privacy preservation. The differential privacy and convergence guarantees are also established for such algorithms. 
    more » « less