skip to main content


Title: The effect of residual palladium on the performance of organic electrochemical transistors
Abstract Organic electrochemical transistors are a promising technology for bioelectronic devices, with applications in neuromorphic computing and healthcare. The active component enabling an organic electrochemical transistor is the organic mixed ionic-electronic conductor whose optimization is critical for realizing high-performing devices. In this study, the influence of purity and molecular weight is examined for a p-type polythiophene and an n-type naphthalene diimide-based polymer in improving the performance and safety of organic electrochemical transistors. Our preparative GPC purification reduced the Pd content in the polymers and improved their organic electrochemical transistor mobility by ~60% and 80% for the p- and n-type materials, respectively. These findings demonstrate the paramount importance of removing residual Pd, which was concluded to be more critical than optimization of a polymer’s molecular weight, to improve organic electrochemical transistor performance and that there is readily available improvement in performance and stability of many of the reported organic mixed ionic-electronic conductors.  more » « less
Award ID(s):
1751308
PAR ID:
10414286
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Organic electrochemical transistors (OECTs) hold promise for developing a variety of high‐performance (bio‐)electronic devices/circuits. While OECTs based on p‐type semiconductors have achieved tremendous progress in recent years, n‐type OECTs still suffer from low performance, hampering the development of power‐efficient electronics. Here, it is demonstrated that fine‐tuning the molecular weight of the rigid, ladder‐type n‐type polymer poly(benzimidazobenzophenanthroline) (BBL) by only one order of magnitude (from 4.9 to 51 kDa) enables the development of n‐type OECTs with record‐high geometry‐normalized transconductance (gm,norm ≈ 11 S cm−1) and electron mobility × volumetric capacitance (µC* ≈ 26 F cm−1 V−1s−1), fast temporal response (0.38 ms), and low threshold voltage (0.15 V). This enhancement in OECT performance is ascribed to a more efficient intermolecular charge transport in high‐molecular‐weight BBL than in the low‐molecular‐weight counterpart. OECT‐based complementary inverters are also demonstrated with record‐high voltage gains of up to 100 V V−1and ultralow power consumption down to 0.32 nW, depending on the supply voltage. These devices are among the best sub‐1 V complementary inverters reported to date. These findings demonstrate the importance of molecular weight in optimizing the OECT performance of rigid organic mixed ionic–electronic conductors and open for a new generation of power‐efficient organic (bio‐)electronic devices.

     
    more » « less
  2. Abstract

    Organic mixed ionic and electronic conductors are of significant interest for bioelectronic applications. Here, three different isoindigoid building blocks are used to obtain polymeric mixed conductors with vastly different structural and electronic properties which can be further fine‐tuned through the choice of comonomer unit. This work shows how careful design of the isoindigoid scaffold can afford highly planar polymer structures with high degrees of electronic delocalization, while subtle structural modifications can control the dominant charge carrier (hole or electron) when probed in organic electrochemical transistors. A combination of experimental and computational techniques is employed to probe electrochemical, structural, and mixed ionic and electronic properties of the polymer series which in turn allows the derivation of important structure–property relations for this promising class of materials in the context of organic bioelectronics. Ultimately, these findings are used to outline robust molecular‐design strategies for isoindigo‐based mixed conductors that can support efficient p‐type, n‐type, and ambipolar transistor operation in an aqueous environment.

     
    more » « less
  3. The commercially available polyelectrolyte complex poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is ubiquitous in organic and hybrid electronics. As such, it has often been used as a benchmark material for fundamental studies and the development of new electronic devices. Yet, most studies on PEDOT:PSS have focused on its electronic conductivity in dry environments, with less consideration given to its ion transport, coupled ionic-electronic transport, and charge storage properties in aqueous environments. These properties are essential for applications in bioelectronics (sensors, actuators), charge storage devices, and electrochromic displays. Importantly, past studies on mixed ionic-electronic transport in PEDOT:PSS neglected to consider how the molecular structure of PSS affects mixed ionic-electronic transport. Herein, we therefore investigated the effect of the molecular weight and size distribution of PSS on the electronic properties and morphology of PEDOT:PSS both in dry and aqueous environments, and overall performance in organic electrochemical transistors (OECTs). Using reversible addition–fragmentation chain transfer (RAFT) polymerization with two different chain transfer agents, six PSS samples with monomodal, narrow ( Đ = 1.1) and broad ( Đ = 1.7) size distributions and varying molecular weights were synthesized and used as matrices for PEDOT. We found that using higher molecular weight of PSS ( M n = 145 kg mol −1 ) and broad dispersity led to OECTs with the highest transconductance (up to 16 mS) and [ μC *] values (∼140 F cm −1 V −1 s −1 ) in PEDOT:PSS, despite having a lower volumetric capacitance ( C * = 35 ± 4 F cm −3 ). The differences were best explained by studying the microstructure of the films by atomic force microscopy (AFM). We found that heterogeneities in the PEDOT:PSS films (interconnected and large PEDOT- and PSS-rich domains) obtained from high molecular weight and high dispersity PSS led to higher charge mobility ( μ OECT ∼ 4 cm 2 V −1 s −1 ) and hence transconductance. These studies highlight the importance of considering molecular weight and size distribution in organic mixed ionic-electronic conductor, and could pave the way to designing high performance organic electronics for biological interfaces. 
    more » « less
  4. Abstract

    Conducting polymers, such as thep-doped poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), have enabled the development of an array of opto- and bio-electronics devices. However, to make these technologies truly pervasive, stable and easily processable,n-doped conducting polymers are also needed. Despite major efforts, non-type equivalents to the benchmark PEDOT:PSS exist to date. Here, we report on the development of poly(benzimidazobenzophenanthroline):poly(ethyleneimine) (BBL:PEI) as an ethanol-basedn-type conductive ink. BBL:PEI thin films yield ann-type electrical conductivity reaching 8 S cm−1, along with excellent thermal, ambient, and solvent stability. This printablen-type mixed ion-electron conductor has several technological implications for realizing high-performance organic electronic devices, as demonstrated for organic thermoelectric generators with record high power output andn-type organic electrochemical transistors with a unique depletion mode of operation. BBL:PEI inks hold promise for the development of next-generation bioelectronics and wearable devices, in particular targeting novel functionality, efficiency, and power performance.

     
    more » « less
  5. Abstract

    Organic electrochemical transistors (OECTs) exhibit strong potential for various applications in bioelectronics, especially as miniaturized, point‐of‐care biosensors, because of their efficient transducing ability. To date, however, the majority of reported OECTs have relied on p‐type (hole transporting) polymer mixed conductors, due to the limited number of n‐type (electron transporting) materials suitable for operation in aqueous electrolytes, and the low performance of those which exist. It is shown that a simple solvent‐engineering approach boosts the performance of OECTs comprising an n‐type, naphthalenediimide‐based copolymer in the channel. The addition of acetone, a rather bad solvent for the copolymer, in the chloroform‐based polymer solution leads to a three‐fold increase in OECT transconductance, as a result of the simultaneous increase in volumetric capacitance and electron mobility in the channel. The enhanced electrochemical activity of the polymer film allows high‐performance glucose sensors with a detection limit of 10 × 10−6mof glucose and a dynamic range of more than eight orders of magnitude. The approach proposed introduces a new tool for concurrently improving the conduction of ionic and electronic charge carriers in polymer mixed conductors, which can be utilized for a number of bioelectronic applications relying on efficient OECT operation.

     
    more » « less