skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Water properties of Brownie Lake, MN and Canyon Lake, MI from 2015-2019
Depth profiles of water column chemical and physical properties were assessed with seasonal-scale frequency from two meromictic lakes in the upper Midwest, U.S.A. from 2015 to 2019. Brownie Lake in Minneapolis, MN and Canyon Lake in the Huron Mountains of MI both contain elevated hypolimnetic dissolved iron (i.e. “ferruginous”). Several parameters were routinely measured with deployable probes at meter or sub-meter resolution at the deepest location in each lake. Water samples were also collected for laboratory analysis.  more » « less
Award ID(s):
1660691 1944946
PAR ID:
10414329
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Depth profiles of water column chemical and physical properties were assessed with seasonal-scale frequency from four lakes in the Itasca State Park from 2006-2009 and from 2019-2023. The data was used to assess the mixing status and major geochemical constituents within the lakes. Several parameters were routinely measured with deployable probes at meter or sub-meter resolution at the deepest location in each lake. Water samples were also collected for laboratory analysis. Bathymetry data collected in 2022 is supplied as rasters. 
    more » « less
  2. The instrumented buoy on Lake Mendota is equipped with a thermistor chain that measures water temperature. In 2006, the thermistors were placed every half-meter from the surface through 7m, and every meter from 7m to 15m. Since 2007, the thermistors were placed every half-meter from the surface through 2m, and every meter from 2m to 20m. The sensor at the water surface is as close to the surface as feasible. A list of sensors used since the first deployment in 2006 is provided as a downloadable CSV file. Hourly and daily water temperature averages are computed from high resolution (1 minute) data. Sampling Frequency: one minute. Number of sites: 1. Location lat/long: 43.0995, -89.4045 
    more » « less
  3. Beginning in 2014, 30 meter vertical tows with a special zooplankton net were collected in Trout Lake specifically for the invasive Bythotrephes longimanus (spiny water flea). The net has a 400 micrometer mesh with a 0.5 meter diameter opening. Individuals are simply counted, and density is determined to be the number of individuals divided by the total water volume of each tow. 
    more » « less
  4. Depth profiles of water column chemical and physical properties were assessed with seasonal-scale frequency from Little Comfort from September 2023 to June 2024 and from Keewahtin Lake in September 2023. The data were collected to assess mixing status, major geochemical constituents within the lake, and mineral precipitation reactions. Several parameters were routinely measured with deployable probes at meter or sub-meter resolution at the deepest location in each lake. Water samples were also collected for laboratory analysis. 
    more » « less
  5. This data set covers the younger outer coastal plain north of Teshekpuk Lake, North Slope, Alaska. In this region, drained lake basins are abundant features, covering large parts of the landscape. This data set is based on Landsat Thematic Mapper (TM) imagery acquired in August 2010, and a 5 meter (m) resolution Interferometric Synthetic Aperture Radar (IfSAR)-derived digital terrain model. Drained lake basins were manually delineated in a geographic information system (GIS). The data set includes Lake 195, which drained in this area in 2014. For further details please see Jones et al. (2015): Jones, BM, and Arp, CD (2015), Observing a Catastrophic Thermokarst Lake Drainage in Northern Alaska. Permafrost and Periglac. Process., 26, 119– 128. doi: 10.1002/ppp.1842. 
    more » « less