skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 AM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: North Temperate Lakes LTER: High Frequency Water Temperature Data - Trout Lake Buoy 2004 - current
The instrumented buoy on Trout Lake is equipped with a thermistor chain that measures water temperature from thermistors placed throughout the water column. From 2004 to mid-summer 2006, thermistors were placed every 0.5-1m from the surface through 14m, and every 2 to 4m from 14m to the bottom of the water column at 31m. The surface temperature sensors are attached to floats so that they are as close to the surface as feasible. In July 2006, a new thermistor chain was deployed with sensors placed every meter from the surface through a depth of 19 meters. This configuration lasted through 2008 and was used again 2012-2014. In the period 2009-2011, thermistors were place every meter down to 20m and then every two meters to a final depth of 32m. From 2015 to present, thermistors are spaced 0.25 meters from the surface to 1m, 0.5 meters down to 4 meters depth, and 1m spacing to 14 meters. Four more thermistors are at depths of 16, 20, 25 and 30 meters. Sampling frequency was 10 minutes in 2004-2005 and again 2007-2010. It was 2 minutes in 2006. Since 2011, sampling frequency has been every minute. Hourly and daily averages are also provided. Number of sites: 1.  more » « less
Award ID(s):
2025982
PAR ID:
10493197
Author(s) / Creator(s):
; ;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The instrumented buoy on Trout Lake is equipped with a dissolved oxygen sensor, a thermistor chain, and meteorological sensors that provide fundamental information on lake thermal structure, weather conditions, and lake metabolism. Data are usually collected every 10 minutes with occasional periods of 2 minute data for short periods to answer specific questions. The D-Opto dissolved oxygen sensor is 0.5m from the lake surface. Meteorological sensors measure wind speed, wind direction, relative humidity, air temperature, photosynthetically active radiation (PAR), and barometric pressure. Starting in 2005, thermistors were placed every 0.5-1m from the surface through 14m and every 2 to 4m from 14m to the bottom of the water column at 31m. In July 2006, a new thermistor chain was deployed with thermistors placed every meter from the surface through a depth of 19 meters. After correcting for flux to or from the atmosphere and vertical mixing within the water column, high frequency measurements of dissolved gases such as carbon dioxide and oxygen can be used to estimate gross primary productivity, respiration, and net ecosystem productivity, the basic components of whole lake metabolism. Data are averaged to daily values from one minute samples for years 2005 - 2006. Daily values are computed from high resolution data starting in year 2007. Data are averaged to hourly values from one minute samples for years 2005 - 2008, Hourly values are computed from high resolution data starting in year 2009. Hourly and daily values may not be current with high resolution data in the current year. Sampling Frequency: varies for instantaneous sample. averaged to hourly and daily values from one minute samples Number of sites: 1 
    more » « less
  2. The instrumented buoy on Lake Mendota is equipped with a thermistor chain that measures water temperature. In 2006, the thermistors were placed every half-meter from the surface through 7m, and every meter from 7m to 15m. Since 2007, the thermistors were placed every half-meter from the surface through 2m, and every meter from 2m to 20m. The sensor at the water surface is as close to the surface as feasible. A list of sensors used since the first deployment in 2006 is provided as a downloadable CSV file. Hourly and daily water temperature averages are computed from high resolution (1 minute) data. Sampling Frequency: one minute. Number of sites: 1. Location lat/long: 43.0995, -89.4045 
    more » « less
  3. The instrumented raft on Sparkling Lake is equipped with a dissolved oxygen and CO2 sensors, a thermistor chain, and meteorological sensors that provide fundamental information on lake thermal structure, weather conditions, evaporation rates, and lake metabolism. Estimating the flux of solutes to and from lakes requires accurate water budgets. Evaporation rates are a critical component of the water budget of lakes. Data from the instrumented raft on Sparkling Lake includes micrometeorological parameters from which evaporation can be calculated. Raft measurements of relative humidity and air temperature (2m height), wind velocity (2m) ,and water temperatures (from thermistors placed throughout the water column at intervals varying from 0.5 to 3m) are combined with measurements of total long-wave and short-wave radiation data from a nearby shore station to determine evaporation by the energy budget technique. Comparable evaporation estimates from mass transfer techniques are calibrated against energy budget estimates to produce a lake-specific mass transfer coefficient for use in estimating evaporation rates. After correcting for flux to or from the atmosphere and vertical mixing within the water column, high frequency measurements of dissolved gases such as carbon dioxide and oxygen can be used to estimate gross primary productivity, respiration, and net ecosystem productivity, the basic components of whole lake metabolism. Other parameters measured include precipitation, wind direction (beginning in 2008), and barometric pressure (beginning in 2008). Sampling Frequency: one minute with hourly and daily averages provided. Number of sites: 1. 
    more » « less
  4. The instrumented raft on Sparkling Lake is equipped with a thermistor chain that measures water temperature from depths ranging from the surface to 18m at an interval of 0.5m near the surface to a one-meter interval throughout the rest of the water column. The surface temperature sensor is attached to a float so it's as close to the surface as feasible. Sampling frequency is currently one minute with hourly and daily averages provided. Number of sites: 1 
    more » « less
  5. We monitored water quality in Carvins Cove Reservoir (Roanoke, Virginia, USA) with high-frequency (10-minute) sensors in 2020-2023. Carvins Cove Reservoir is owned and managed by the Western Virginia Water Authority as a primary drinking water source. This data package consists of datasets from two separate deployments. First, from July 2020 - August 2021, depth profiles of water temperature were measured on 1-meter intervals using HOBO temperature pendant loggers deployed from 0.1 m below the surface of the reservoir to 10 m depth, and also at 15 and 20 m depth. Additionally, water temperature was measured in the Sawmill Branch inflow at 0.5 m depth using HOBO temperature pendant loggers. Second, from 9 April 2021 - 31 December 2023, depth profiles of water temperature were measured on 1-meter intervals from 0.1 m below the surface of the reservoir to 11 m depth and additionally at 15 and 19 m. A YSI EXO2 sonde measured water temperature, conductivity, specific conductance, chlorophyll a, phycocyanin, total dissolved solids, dissolved oxygen, and fluorescent dissolved organic matter at ~1.5 m depth. A YSI EXO3 sonde measured water temperature, conductivity, specific conductance, total dissolved solids, dissolved oxygen, and fluorescent dissolved organic matter at 9 m depth, which corresponds to the depth of a water outtake valve. The thermistors, EXO3 sonde, and pressure sensor were deployed at stationary, fixed elevations (referred to as positions) deployed off of the dam near the water outtake valves. Due to variable water levels in the reservoir, the depths of these sensors varied over time. In contrast, the EXO2 was deployed on a buoy from 2021-2022 and remained at 1.5 m depth as the water level fluctuated. However, in 2023, the buoy disappeared in a storm, after that the EOX2 was deployed at a stationary elevation as the water level fluctuated around the sensor. At the monitoring site, the reservoir is approximately 19 m deep (reservoir maximum depth is 23 m). 
    more » « less