skip to main content


Title: North Temperate Lakes LTER: High Frequency Meteorological and Dissolved Oxygen Data - Trout Lake Buoy 2004 - current
The instrumented buoy on Trout Lake is equipped with a dissolved oxygen sensor, a thermistor chain, and meteorological sensors that provide fundamental information on lake thermal structure, weather conditions, and lake metabolism. Data are usually collected every 10 minutes with occasional periods of 2 minute data for short periods to answer specific questions. The D-Opto dissolved oxygen sensor is 0.5m from the lake surface. Meteorological sensors measure wind speed, wind direction, relative humidity, air temperature, photosynthetically active radiation (PAR), and barometric pressure. Starting in 2005, thermistors were placed every 0.5-1m from the surface through 14m and every 2 to 4m from 14m to the bottom of the water column at 31m. In July 2006, a new thermistor chain was deployed with thermistors placed every meter from the surface through a depth of 19 meters. After correcting for flux to or from the atmosphere and vertical mixing within the water column, high frequency measurements of dissolved gases such as carbon dioxide and oxygen can be used to estimate gross primary productivity, respiration, and net ecosystem productivity, the basic components of whole lake metabolism. Data are averaged to daily values from one minute samples for years 2005 - 2006. Daily values are computed from high resolution data starting in year 2007. Data are averaged to hourly values from one minute samples for years 2005 - 2008, Hourly values are computed from high resolution data starting in year 2009. Hourly and daily values may not be current with high resolution data in the current year. Sampling Frequency: varies for instantaneous sample. averaged to hourly and daily values from one minute samples Number of sites: 1  more » « less
Award ID(s):
2025982
NSF-PAR ID:
10493199
Author(s) / Creator(s):
; ;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The instrumented buoy on Trout Lake is equipped with a thermistor chain that measures water temperature from thermistors placed throughout the water column. From 2004 to mid-summer 2006, thermistors were placed every 0.5-1m from the surface through 14m, and every 2 to 4m from 14m to the bottom of the water column at 31m. The surface temperature sensors are attached to floats so that they are as close to the surface as feasible. In July 2006, a new thermistor chain was deployed with sensors placed every meter from the surface through a depth of 19 meters. This configuration lasted through 2008 and was used again 2012-2014. In the period 2009-2011, thermistors were place every meter down to 20m and then every two meters to a final depth of 32m. From 2015 to present, thermistors are spaced 0.25 meters from the surface to 1m, 0.5 meters down to 4 meters depth, and 1m spacing to 14 meters. Four more thermistors are at depths of 16, 20, 25 and 30 meters. Sampling frequency was 10 minutes in 2004-2005 and again 2007-2010. It was 2 minutes in 2006. Since 2011, sampling frequency has been every minute. Hourly and daily averages are also provided. Number of sites: 1. 
    more » « less
  2. The instrumented raft on Sparkling Lake is equipped with a dissolved oxygen and CO2 sensors, a thermistor chain, and meteorological sensors that provide fundamental information on lake thermal structure, weather conditions, evaporation rates, and lake metabolism. Estimating the flux of solutes to and from lakes requires accurate water budgets. Evaporation rates are a critical component of the water budget of lakes. Data from the instrumented raft on Sparkling Lake includes micrometeorological parameters from which evaporation can be calculated. Raft measurements of relative humidity and air temperature (2m height), wind velocity (2m) ,and water temperatures (from thermistors placed throughout the water column at intervals varying from 0.5 to 3m) are combined with measurements of total long-wave and short-wave radiation data from a nearby shore station to determine evaporation by the energy budget technique. Comparable evaporation estimates from mass transfer techniques are calibrated against energy budget estimates to produce a lake-specific mass transfer coefficient for use in estimating evaporation rates. After correcting for flux to or from the atmosphere and vertical mixing within the water column, high frequency measurements of dissolved gases such as carbon dioxide and oxygen can be used to estimate gross primary productivity, respiration, and net ecosystem productivity, the basic components of whole lake metabolism. Other parameters measured include precipitation, wind direction (beginning in 2008), and barometric pressure (beginning in 2008). Sampling Frequency: one minute with hourly and daily averages provided. Number of sites: 1. 
    more » « less
  3. The instrumented buoy on Lake Mendota is equipped with limnological and meteorological sensors that provide fundamental information on lake thermal structure, weather conditions, and lake metabolism. Data are collected every minute. Hourly and daily averages are derived from the high resolution (1 minute) data. Hourly and daily values may not be current with high resolution data as they are calculated at the end of the season. Meteorological sensors measure wind speed, wind direction, relative humidity, air temperature, and photosynthetically active radiation (PAR). Not all sensors are deployed each season. A list of sensors used since the first deployment in 2006 is provided as a downloadable CSV file. Number of sites: 1. Location lat/long: 43.0995, -89.4045 Notable events: 2017 - A boating mishap caused the loss of air temperature, relative humidity, and wind sensors between May 28 and July 11. The dissolved oxygen sensor had significant biofouling from algae and zebra mussels. 2019 - A YSI EXO2 sonde was added to the buoy and includes DO, chlorophyll, phycocyanin, specific conductance, pH, fDOM, and turbidity sensors. The chlorophyll and phycocyanin sensors replace Turner Cyclops 7 fluorometers that had been in use in prior years. Both sets of sensors output RFU, but have significant magnitude differences. The YSI pH, DO, and specific conductance sensors were cleaned and recalibrated every two weeks. 2020 - Cleaning and calibration of the YSI sensors occurred nearly every week. The dissolved CO2 sensor was not operating between July 2 and September 17. 2021 - Due to power and communications issues, the buoy was not operating August 22-31, and data is intermittent between November 8 and December 3. An effective method to keep the underwater PAR sensor mostly free of biofouling algae has been employed. 2022 - Buoy was not operating June 6-9 and July 2-5 due to power issues. Underwater PAR sensor unusable after October 1. 
    more » « less
  4. The instrumented buoy on Lake Mendota is equipped with a thermistor chain that measures water temperature. In 2006, the thermistors were placed every half-meter from the surface through 7m, and every meter from 7m to 15m. Since 2007, the thermistors were placed every half-meter from the surface through 2m, and every meter from 2m to 20m. The sensor at the water surface is as close to the surface as feasible. A list of sensors used since the first deployment in 2006 is provided as a downloadable CSV file. Hourly and daily water temperature averages are computed from high resolution (1 minute) data. Sampling Frequency: one minute. Number of sites: 1. Location lat/long: 43.0995, -89.4045 
    more » « less
  5. Soil temperature data are being gathered at a site at the Noble F. Lee municipal airport located at Woodruff, WI. Soil temperature is measured at depths of 0.05m, 0.1m and 0.5m at 1-minute intervals. High resolution data are collected (typically at 10 minute intervals) along with 1-hour and 24-hour averages. Daily minimum and maximum soil temperatures and the times these occur are reported for these same depths. Data are automatically updated into the database every six hours. Prior to August 2006, only hourly averaged data are available. Starting in 2008, soil temperatures are only available from 0.5m depth. Sampling frequency: varies for instantaneous samples; averaged to hourly and daily values from one minute samples. Number of sites: 1. 
    more » « less