skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Plant water use theory should incorporate hypotheses about extreme environments, population ecology, and community ecology
Summary Plant water use theory has largely been developed within a plant‐performance paradigm that conceptualizes water use in terms of value for carbon gain and that sits within a neoclassical economic framework. This theory works very well in many contexts but does not consider other values of water to plants that could impact their fitness. Here, we survey a range of alternative hypotheses for drivers of water use and stomatal regulation. These hypotheses are organized around relevance to extreme environments, population ecology, and community ecology. Most of these hypotheses are not yet empirically tested and some are controversial (e.g. requiring more agency and behavior than is commonly believed possible for plants). Some hypotheses, especially those focused around using water to avoid thermal stress, using water to promote reproduction instead of growth, and using water to hoard it, may be useful to incorporate into theory or to implement in Earth System Models.  more » « less
Award ID(s):
2140428 2140429 2140427 2025282 2341692
PAR ID:
10414395
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
238
Issue:
6
ISSN:
0028-646X
Page Range / eLocation ID:
p. 2271-2283
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Life on Earth depends on the conversion of solar energy to chemical energy by plants through photosynthesis. A fundamental challenge in optimizing photosynthesis is to adjust leaf angles to efficiently use the intercepted sunlight under the constraints of heat stress, water loss and competition. Despite the importance of leaf angle, until recently, we have lacked data and frameworks to describe and predict leaf angle dynamics and their impacts on leaves to the globe. We review the role of leaf angle in studies of ecophysiology, ecosystem ecology and earth system science, and highlight the essential yet understudied role of leaf angle as an ecological strategy to regulate plant carbon–water–energy nexus and to bridge leaf, canopy and earth system processes. Using two models, we show that leaf angle variations have significant impacts on not only canopy‐scale photosynthesis, energy balance and water use efficiency but also light competition within the forest canopy. New techniques to measure leaf angles are emerging, opening opportunities to understand the rarely‐measured intraspecific, interspecific, seasonal and interannual variations of leaf angles and their implications to plant biology and earth system science. We conclude by proposing three directions for future research. 
    more » « less
  2. Abstract Synchronized episodic reproduction among long‐lived plants shapes ecological interactions, ecosystem dynamics, and evolutionary processes worldwide. Two active scientific fields investigate the causes and consequences of such synchronized reproduction: the fields of masting and fire‐stimulated flowering. While parallels between masting and fire‐stimulated flowering have been previously noted, there has been little dialogue between these historically independent fields. We predict that the synthesis of these fields will facilitate new insight into the causes and consequences of synchronized reproduction. Here we briefly review parallels between masting and fire‐stimulated flowering, using two case studies and a database of 1870 plant species to facilitate methodological, conceptual, geographical, taxonomic, and phylogenetic comparisons. We identify avenues for future research and describe three key opportunities associated with synthesis. First, the taxonomic and geographic complementarity of empirical studies from these historically independent fields highlights the potential to derive more general inferences about global patterns and consequences of synchronized reproduction in perennial plants. Second, masting's well developed conceptual framework for evaluating adaptive hypotheses can help guide empirical studies of fire‐stimulated species and enable stronger inferences about the evolutionary ecology of fire‐stimulated flowering. Third, experimental manipulation of reproductive variation in fire‐stimulated species presents unique opportunities to empirically investigate foundational questions about ecological and evolutionary processes underlying synchronized reproduction. Synthesis of these fields and their complementary insights offers a unique opportunity to advance our understanding of the evolutionary ecology of synchronized reproduction in perennial plants. 
    more » « less
  3. Abstract Plant functional strategies change considerably as plants develop, driven by intraindividual variability in anatomical, morphological, physiological and architectural traits.Developmental trait variation arises through the complex interplay among genetically regulated phase change (i.e. ontogeny), increases in plant age and size, and phenotypic plasticity to changing environmental conditions. Although spatial drivers of intraspecific trait variation have received extensive research attention, developmentally driven intraspecific trait variation is largely overlooked, despite widespread occurrence.Ontogenetic trait variation is genetically regulated, leads to dramatic changes in plant phenotypes and evolves in response to predictable changes in environmental conditions as plants develop.Evidence has accumulated to support a general shift from fast to slow relative growth rates and from shade to sun leaves as plants develop from the highly competitive but shady juvenile niche to the stressful adult niche in the systems studied to date.Nonetheless, there are major gaps in our knowledge due to examination of only a few environmental factors selecting for the evolution of ontogenetic trajectories, variability in how ontogeny is assigned, biogeographic sampling biases on trees in temperate biomes, dependencies on a few broadly sampled leaf morphological traits and a lack of longitudinal studies that track ontogeny within individuals. Filling these gaps will enhance our understanding of plant functional ecology and provide a framework for predicting the effects of global change threats that target specific ontogenetic stages. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  4. Abstract Classifying the diverse ways that plants respond to hydrologic stress into generalizable ‘water‐use strategies’ has long been an eco‐physiological research goal. While many schemes for describing water‐use strategies have proven to be quite useful, they are also associated with uncertainties regarding their theoretical basis and their connection to plant carbon and water relations. In this review, we discuss the factors that shape plant water stress responses and assess the approaches used to classify a plant's water‐use strategy, paying particular attention to the popular but controversial concept of a continuum from isohydry to anisohydry.A generalizable and predictive framework for assessing plant water‐use strategies has been historically elusive, yet recent advances in plant physiology and hydraulics provide the field with a way past these obstacles. Specifically, we promote the idea that many metrics that quantify water‐use strategies are highly dynamic and emergent from the interaction between plant traits and environmental conditions, and that this complexity has historically hindered the development of a generalizable water‐use strategy framework.This idea is explored using a plant hydraulics model to identify: (a) distinct temporal phases in plant hydraulic regulation during drought that underpin dynamic water‐use responses, and (b) how variation in both traits and environmental forcings can significantly alter common metrics used to characterize plant water‐use strategies. This modelling exercise can bridge the divide between various conceptualizations of water‐use strategies and provide targeted hypotheses to advance the understanding and quantification of plant water status regulation across spatial and temporal scales.Finally, we describe research frontiers that are necessary to improve the predictive capacity of the plant water‐use strategy concept, including further investigation into the below‐ground determinants of plant water relations, targeted data collection efforts and the potential to scale these concepts from individuals to whole regions. A freePlain Language Summarycan be found within the Supporting Information of this article. 
    more » « less
  5. Abstract Determining the factors affecting the structure of insect herbivore communities is a major challenge in ecology. Previous research demonstrated that plant defenses determine plant‐herbivore associations. However, non‐defensive variables may also explain why some plant species are associated with more diverse insect herbivore assemblages than others. Neotropical rolled‐leaf beetles (CephaloleiaandChelobasis) complete their life cycle inside the young rolled leaves of their host plants in the order Zingiberales. The diet breadth of each species in this assemblage is particularly well‐known at our study site, La Selva Biological Station in Costa Rica. This study focused on the following non‐defensive variables: host plant elevational and geographic range size, soil type, habitat, local abundance, plant size, and leaf size. Because plant characteristics among closely related plants are not independent, we analyzed these variables in a phylogenetic context. We detected a positive effect of leaf width on rolled‐leaf beetle species richness (explaining 55% of the variation), abundance (28% of the variation and 57% when habitat is included in the model), diversity (37% of the variation), and community structure (6% of the variation, and 21%–26% when taxonomic family is included in the model). Our study demonstrates that Zingiberales leaf width influences positively rolled‐leaf beetle species richness, abundance, and diversity. This effect varies among plant families. Our study shows that plant architecture plays an important role in structuring insect herbivore assemblages in Zingiberales. Our results highlight the importance of including variables beyond plant defenses to understand the ecology and evolution of plant‐herbivore interactions. 
    more » « less