skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lenart's Bijection via Bumpless Pipe Dreams
Pipe dreams and bumpless pipe dreams for vexillary permutations are each known to be in bijection with certain semistandard tableaux via maps due to Lenart and Weigandt, respectively. Recently, Gao and Huang have defined a bijection between the former two sets. In this note we show for vexillary permutations that the Gao-Huang bijection preserves the associated tableaux, giving a new proof of Lenart's result. Our methods extend to give a recording tableau for any bumpless pipe dream.  more » « less
Award ID(s):
2054423
PAR ID:
10414452
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The Electronic Journal of Combinatorics
Volume:
30
Issue:
1
ISSN:
1077-8926
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We characterize totally symmetric self-complementary plane partitions (TSSCPP) as bounded compatible sequences satisfying a Yamanouchi-like condition. As such, they are in bijection with certain pipe dreams. Using this characterization and the recent bijection of Gao–Huang between reduced pipe dreams and reduced bumpless pipe dreams, we give a bijection between alternating sign matrices and TSSCPP in the reduced, 1432-avoiding case. We also give a different bijection in the 1432- and 2143-avoiding case that preserves natural poset structures on the associated pipe dreams and bumpless pipe dreams. 
    more » « less
  2. Abstract We present a direct bijection between reduced pipe dreams and reduced bumpless pipe dreams (BPDs) by interpreting reduced compatible sequences on BPDs and show that this is the unique bijection preserving bijective realizations of Monk’s formula, establishing its canonical nature. 
    more » « less
  3. We give bijective proofs of Monk's rule for Schubert and double Schubert polynomials computed with bumpless pipe dreams. In particular, they specialize to bijective proofs of transition and cotransition formulas of Schubert and double Schubert polynomials, which can be used to establish bijections with ordinary pipe dreams. 
    more » « less
  4. null (Ed.)
    We give bijective proofs of Monk’s rule for Schubert and double Schubert polynomials computed with bumpless pipe dreams. In particular, they specialize to bijective proofs of transition and cotransition formulas of Schubert and double Schubert polynomials, which can be used to establish bijections with ordinary pipe dreams. 
    more » « less
  5. We study random permutations arising from reduced pipe dreams. Our main model is motivated by Grothendieck polynomials with parameter $$\beta=1$$ arising in K-theory of the flag variety. The probability weight of a permutation is proportional to the principal specialization (setting all variables to 1) of the corresponding Grothendieck polynomial. By mapping this random permutation to a version of TASEP (Totally Asymmetric Simple Exclusion Process), we describe the limiting permuton and fluctuations around it as the order $$n$$ of the permutation grows to infinity. The fluctuations are of order $$n^{\frac13}$$ and have the Tracy-Widom GUE distribution, which places this algebraic (K-theoretic) model into the Kardar-Parisi-Zhang universality class. We also investigate non-reduced pipe dreams and make progress on a recent open problem on the asymptotic number of inversions of the resulting permutation. Inspired by Stanley's question for the maximal value of principal specializations of Schubert polynomials, we resolve the analogous question for $$\beta=1$$ Grothendieck polynomials, and provide bounds for general $$\beta$$. 
    more » « less