We study random permutations corresponding to pipe dreams. Our main model is motivated by the Grothendieck polynomials with parameter ß = 1 arising in the K-theory of the flag variety. The probability weight of a permutation is proportional to the principal specialization (setting all variables to 1) of its Grothendieck polyno- mial. By mapping this random permutation to a version of TASEP (Totally Asymmetric Simple Exclusion Process, we describe the limiting permuton and fluctuations around it as the order n of the permutation grows to infinity. The fluctuations are of order n$ and have the Tracy-Widom GUE distribution, which places this algebraic (K-theoretic) model into the Kardar-Parisi-Zhang universality class. Inspired by Stanley's question for the maximal value of principal specializations of Schubert polynomials, we resolve the analogous question for B = 1 Grothendieck polynomials, and provide bounds for general B. This analysis uses a correspondence with the free fermion six-vertex model, and the frozen boundary of the Aztec diamond.
more »
« less
Grothendieck Shenanigans: Permutons from pipe dreams via integrable probability
We study random permutations arising from reduced pipe dreams. Our main model is motivated by Grothendieck polynomials with parameter $$\beta=1$$ arising in K-theory of the flag variety. The probability weight of a permutation is proportional to the principal specialization (setting all variables to 1) of the corresponding Grothendieck polynomial. By mapping this random permutation to a version of TASEP (Totally Asymmetric Simple Exclusion Process), we describe the limiting permuton and fluctuations around it as the order $$n$$ of the permutation grows to infinity. The fluctuations are of order $$n^{\frac13}$$ and have the Tracy-Widom GUE distribution, which places this algebraic (K-theoretic) model into the Kardar-Parisi-Zhang universality class. We also investigate non-reduced pipe dreams and make progress on a recent open problem on the asymptotic number of inversions of the resulting permutation. Inspired by Stanley's question for the maximal value of principal specializations of Schubert polynomials, we resolve the analogous question for $$\beta=1$$ Grothendieck polynomials, and provide bounds for general $$\beta$$.
more »
« less
- Award ID(s):
- 2153869
- PAR ID:
- 10611264
- Publisher / Repository:
- arXiv
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We introduce families of two-parameter multivariate polynomials indexed by pairs of partitions $v,w$$ -- {\it biaxial double} $$(\beta,q)$$-{\it Grothendieck polynomials} -- which specialize at $$q=0$ and $v=1$ to double $$\beta$$-Grothendieck polynomials from torus-equivariant connective K-theory. Initially defined recursively via divided difference operators, our main result is that these new polynomials arise as partition functions of solvable lattice models. Moreover, the associated quantum group of the solvable model for polynomials in $$n$$ pairs of variables is a Drinfeld twist of the $$U_q(\widehat{\mathfrak{sl}}_{n+1})$$ $$R$$-matrix. By leveraging the resulting Yang-Baxter equations of the lattice model, we show that these polynomials simultaneously generalize double $$\beta$$-Grothendieck polynomials and dual double $$\beta$$-Grothendieck polynomials for arbitrary permutations. We then use properties of the model and Yang-Baxter equations to reprove Fomin-Kirillov's Cauchy identity for $$\beta$$-Grothendieck polynomials, generalize it to a new Cauchy identity for biaxial double $$\beta$$-Grothendieck polynomials, and prove a new branching rule for double $$\beta$$-Grothendieck polynomials.more » « less
-
We study probability measures on partitions based on symmetric Grothendieck polynomials. These deformations of Schur polynomials introduced in the K-theory of Grassmannians share many common properties. Our Grothendieck measures are analogs of the Schur measures on partitions introduced by Okounkov (Sel Math 7(1):57–81, 2001). Despite the similarity of determinantal formulas for the probability weights of Schur and Grothendieck measures, we demonstrate that Grothendieck measures are not determinantal point processes. This question is related to the principal minor assignment problem in algebraic geometry, and we employ a determinantal test first obtained by Nanson in 1897 for the 4 × 4 problem. We also propose a procedure for getting Nanson-like determinantal tests for matrices of any size n ≥ 4, which appear new for n ≥ 5. By placing the Grothendieck measures into a new framework of tilted biorthogonal ensembles generalizing a rich class of determinantal processes introduced by Borodin (Nucl Phys B 536:704–732, 1998), we identify Grothendieck random partitions as a cross-section of a Schur process, a determinantal process in two dimensions. This identification expresses the correlation functions of Grothendieck measures through sums of Fredholm determinants, which are not immediately suitable for asymptotic analysis. A more direct approach allows us to obtain a limit shape result for the Grothendieck random partitions. The limit shape curve is not particularly explicit as it arises as a cross-section of the limit shape surface for the Schur process. The gradient of this surface is expressed through the argument of a complex root of a cubic equation.more » « less
-
Matrix Schubert varieties are affine varieties arising in the Schubert calculus of the complete flag variety. We give a formula for the Castelnuovo–Mumford regularity of matrix Schubert varieties, answering a question of Jenna Rajchgot. We follow her proposed strategy of studying the highest-degree homogeneous parts of Grothendieck polynomials, which we call Castelnuovo–Mumford polynomials. In addition to the regularity formula, we obtain formulas for the degrees of all Castelnuovo–Mumford polynomials and for their leading terms, as well as a complete description of when two Castelnuovo–Mumford polynomials agree up to scalar multiple. The degree of the Grothendieck polynomial is a new permutation statistic which we call the Rajchgot index; we develop the properties of Rajchgot index and relate it to major index and to weak order.more » « less
-
null (Ed.)Abstract We investigate the long-standing problem of finding a combinatorial rule for the Schubert structure constants in the $$K$$-theory of flag varieties (in type $$A$$). The Grothendieck polynomials of A. Lascoux–M.-P. Schützenberger (1982) serve as polynomial representatives for $$K$$-theoretic Schubert classes; however no positive rule for their multiplication is known in general. We contribute a new basis for polynomials (in $$n$$ variables) which we call glide polynomials, and give a positive combinatorial formula for the expansion of a Grothendieck polynomial in this basis. We then provide a positive combinatorial Littlewood–Richardson rule for expanding a product of Grothendieck polynomials in the glide basis. Our techniques easily extend to the $$\beta$$-Grothendieck polynomials of S. Fomin–A. Kirillov (1994), representing classes in connective $$K$$-theory, and we state our results in this more general context.more » « less
An official website of the United States government

