[This paper is part of the Focused Collection in Investigating and Improving Quantum Education through Research.] One hallmark of expertise in physics is the ability to translate between different representations of knowledge and use the representations that make the problem-solving process easier. In quantum mechanics, students learn about several ways to represent quantum states, e.g., as state vectors in Dirac notation and as wave functions in position and momentum representation. Many advanced students in upper-level undergraduate and graduate quantum mechanics courses have difficulty translating state vectors in Dirac notation to wave functions in the position or momentum representation and vice versa. They also struggle when translating the wave function between the position and momentum representations. The research presented here describes the difficulties that students have with these concepts and how the research was used as a guide in the development, validation, and evaluation of a Quantum Interactive Learning Tutorial (QuILT) to help students develop a functional understanding of these concepts. The QuILT strives to help students with different representations of quantum states as state vectors in Dirac notation and as wave functions in position and momentum representation and with translating between these representations. We discuss the effectiveness of the QuILT from in-class implementation and evaluation. Published by the American Physical Society2024
more »
« less
Waving arms around to teach quantum mechanics
Kinesthetic (or embodied) representations help students build intuition and deep understanding of concepts. This paper presents a series of kinesthetic activities for a spins-first undergraduate quantum mechanics course that supports students in reasoning and developing intuition about the complex-valued vectors of spin states. The arms representation, used in these activities, was developed as a tangible representation of complex numbers: Students act as an Argand diagram, using their left arm to represent numbers in the complex plane. The arms representation is versatile and can be expanded to depict complex-valued vectors with groups of students. This expansion enables groups of students to represent quantum mechanical state vectors with their arms. We have developed activities using the arms representation that parallel the progression of a spins-first approach by starting with complex numbers, then representing two- and three-state systems, considering time-dependence, and, eventually, extending to approximate wavefunctions. Each activity illustrates the complex nature of quantum states and provides a tangible manipulative from which students can build intuition about quantum phenomena.
more »
« less
- PAR ID:
- 10414582
- Date Published:
- Journal Name:
- American Journal of Physics
- Volume:
- 90
- Issue:
- 10
- ISSN:
- 0002-9505
- Page Range / eLocation ID:
- 778 to 786
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The objective of this paper is to provide a holistic summary of ongoing research related to the development, implementation, assessment, and continuous refinement of an augmented reality (AR) app known as Vectors in Space. This Unity-based app was created by the authors and provides a self-guided learning experience for students to learn about fundamental vector concepts routinely encountered in undergraduate physics and engineering mechanics courses. Vectors are a fundamental tool in mechanics courses as they allow for the precise and comprehensive description of physical phenomena such as forces, moments, and motion. In early engineering coursework, students often perceive vectors as an abstract mathematical concept that requires spatial visualization skills in three dimensions (3D). The app aims to allow students to build these tacit skills while simultaneously allowing them to learn fundamental vector concepts that will be necessary in subsequent coursework. Three self-paced, guided learning activities systematically address concepts that include: (a) Cartesian components of vectors, (b) unit vectors and directional angles, (c) addition, (d) subtraction, (e) cross product using the right-hand rule, (f) angle between vectors using the dot product, and (g) vector projections using the dot product. The authors first discuss the app's scaffolding approach with special attention given to the incorporation of Mayer's principles of multimedia learning as well as the use of animations. The authors' approach to develop the associated statics learning activities, practical aspects of implementation, and lessons learned are shared. The effectiveness of the activities is assessed by applying analysis of covariance (ANCOVA) to pre- and post-activity assessment scores for control and treatment groups. Though the sample sizes are relatively small (less than 50 students), the results demonstrate that AR had a positive impact on student learning of the dot product and its applications. Larger sample sizes and refinements to the test instruments will be necessary in the future to draw robust conclusions regarding the other vector topics and operations. Qualitative feedback from student focus groups conducted with undergraduate engineering students identified the app's strengths as well as potential areas of improvement.more » « less
-
One expected outcome of physics instruction is for students to be capable of relating physical concepts to multiple mathematical representations. In quantum mechanics (QM), students are asked to work across multiple symbolic notations, including some they have not previously encountered. To investigate student understanding of the relationships between expressions used in these various notations, a survey was developed and distributed to students at six different institutions. All of the courses studied were structured as “spins-first,” in which the course begins with spin-1/2 systems and Dirac notation before transitioning to include continuous systems and wave function notation. Network analysis techniques such as community detection methods were used to investigate conceptual connections between commonly used expressions in upper-division QM courses. Our findings suggest that, for spins-first students, Dirac bras and kets share a stronger identity with vectorlike concepts than are associated with quantum state or wave function concepts. This work represents a novel way of using well-developed network analysis techniques and suggests such techniques could be used for other purposes as well.more » « less
-
Understanding howAI recommendationswork can help the younger generation become more informed and critical consumers of the vast amount of information they encounter daily. However, young learners with limited math and computing knowledge often find AI concepts too abstract. To address this, we developed Briteller, a light-based recommendation system that makes learning tangible. By exploring and manipulating light beams, Briteller enables children to understand an AI recommender system’s core algorithmic building block, the dot product, through hands-on interactions. Initial evaluations with ten middle school students demonstrated the effectiveness of this approach, using embodied metaphors, such as "merging light" to represent addition. To overcome the limitations of the physical optical setup, we further explored how AR could embody multiplication, expand data vectors with more attributes, and enhance contextual understanding. Our findings provide valuable insights for designing embodied and tangible learning experiences that make AI concepts more accessible to young learners.more » « less
-
Abstract In the emerging quantum internet, complex network topology could lead to efficient quantum communication and robustness against failures. However, there are concerns about complexity in quantum communication networks, such as potentially limited end-to-end transmission capacity. These challenges call for model systems in which the impact of complex topology on quantum communication protocols can be explored. Here, we present a theoretical model for complex quantum communication networks on a lattice of spins, wherein entangled spin clusters in interacting quantum spin systems serve as communication links between appropriately selected regions of spins. Specifically, we show that ground state Greenberger-Horne-Zeilinger clusters of the two-dimensional random transverse-field Ising model can be used as communication links between regions of spins. Further, the resulting quantum networks can have complexity comparable to that of the classical internet. Our work provides a generative model for further studies towards determining the network characteristics of the emerging quantum internet.more » « less
An official website of the United States government

