skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Frobenius-Perron theory for projective schemes
The Frobenius-Perron theory of an endofunctor of a k \Bbbk -linear category (recently introduced in Chen et al. [Algebra Number Theory 13 (2019), pp. 2005–2055]) provides new invariants for abelian and triangulated categories. Here we study Frobenius-Perron type invariants for derived categories of commutative and noncommutative projective schemes. In particular, we calculate the Frobenius-Perron dimension for domestic and tubular weighted projective lines, define Frobenius-Perron generalizations of Calabi-Yau and Kodaira dimensions, and provide examples. We apply this theory to the derived categories associated to certain Artin-Schelter regular and finite-dimensional algebras.  more » « less
Award ID(s):
2001015
PAR ID:
10414593
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Transactions of the American Mathematical Society
Volume:
376
Issue:
4
ISSN:
0002-9947
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the finite generation property for cohomology of a finite tensor category C \mathscr {C} , which requires that the self-extension algebra of the unit \operatorname {Ext}^\text {\tiny ∙ }_\mathscr {C}(\mathbf {1},\mathbf {1}) is a finitely generated algebra and that, for each object V V in C \mathscr {C} , the graded extension group \operatorname {Ext}^\text {\tiny ∙ }_\mathscr {C}(\mathbf {1},V) is a finitely generated module over the aforementioned algebra. We prove that this cohomological finiteness property is preserved under duality (with respect to exact module categories) and taking the Drinfeld center, under suitable restrictions on C \mathscr {C} . For example, the stated result holds when C \mathscr {C} is a braided tensor category of odd Frobenius-Perron dimension. By applying our general results, we obtain a number of new examples of finite tensor categories with finitely generated cohomology. In characteristic 0 0 , we show that dynamical quantum groups at roots of unity have finitely generated cohomology. We also provide a new class of examples in finite characteristic which are constructed via infinitesimal group schemes. 
    more » « less
  2. Novikov, Krichever (Ed.)
    In [TV19a] the equivariant quantum differential equation (qDE) for a projective space was considered and a compatible system of difference qKZ equations was introduced; the space of solutions to the joint system of the qDE and qKZ equations was identified with the space of the equivariant K-theory algebra of the projective space; Stokes bases in the space of solutions were identified with exceptional bases in the equivariant K-theory algebra. This paper is a continuation of [TV19a]. We describe the relation between solutions to the joint system of the qDE and qKZ equations and the topological-enumerative solution to the qDE only, defined as a generating function of equivariant descendant Gromov-Witten invariants. The relation is in terms of the equivariant graded Chern character on the equivariant K-theory algebra, the equivariant Gamma class of the projective space, and the equivariant first Chern class of the tangent bundle of the projective space. We consider a Stokes basis, the associated exceptional basis in the equivariant K-theory algebra, and the associated Stokes matrix. We show that the Stokes matrix equals the Gram matrix of the equivariant Grothendieck-Euler-Poincaré pairing wrt to the basis, which is the left dual to the associated exceptional basis. We identify the Stokes bases in the space of solutions with explicit full exceptional collections in the equivariant derived category of coherent sheaves on the projective space, where the elements of those exceptional collections are just line bundles on the projective space and exterior powers of the tangent bundle of the projective space. These statements are equivariant analogs of results of G. Cotti, B. Dubrovin, D. Guzzetti, and S. Galkin, V. Golyshev, H. Iritani. 
    more » « less
  3. In [M. De Renzi, A. Gainutdinov, N. Geer, B. Patureau-Mirand and I. Runkel, 3-dimensional TQFTs from non-semisimple modular categories, preprint (2019), arXiv:1912.02063[math.GT]], we constructed 3-dimensional topological quantum field theories (TQFTs) using not necessarily semisimple modular categories. Here, we study projective representations of mapping class groups of surfaces defined by these TQFTs, and we express the action of a set of generators through the algebraic data of the underlying modular category [Formula: see text]. This allows us to prove that the projective representations induced from the non-semisimple TQFTs of the above reference are equivalent to those obtained by Lyubashenko via generators and relations in [V. Lyubashenko, Invariants of 3-manifolds and projective representations of mapping class groups via quantum groups at roots of unity, Comm. Math. Phys. 172(3) (1995) 467–516, arXiv:hep-th/9405167]. Finally, we show that, when [Formula: see text] is the category of finite-dimensional representations of the small quantum group of [Formula: see text], the action of all Dehn twists for surfaces without marked points has infinite order. 
    more » « less
  4. Aichholzer, Oswin; Wang, Haitao (Ed.)
    Quantum topology provides various frameworks for defining and computing invariants of manifolds inspired by quantum theory. One such framework of substantial interest in both mathematics and physics is the Turaev-Viro-Barrett-Westbury state sum construction, which uses the data of a spherical fusion category to define topological invariants of triangulated 3-manifolds via tensor network contractions. In this work we analyze the computational complexity of state sum invariants of 3-manifolds derived from Tambara-Yamagami categories. While these categories are the simplest source of state sum invariants beyond finite abelian groups (whose invariants can be computed in polynomial time) their computational complexities are yet to be fully understood. We first establish that the invariants arising from even the smallest Tambara-Yamagami categories are #P-hard to compute, so that one expects the same to be true of the whole family. Our main result is then the existence of a fixed parameter tractable algorithm to compute these 3-manifold invariants, where the parameter is the first Betti number of the 3-manifold with ℤ/2ℤ coefficients. Contrary to other domains of computational topology, such as graphs on surfaces, very few hard problems in 3-manifold topology are known to admit FPT algorithms with a topological parameter. However, such algorithms are of particular interest as their complexity depends only polynomially on the combinatorial representation of the input, regardless of size or combinatorial width. Additionally, in the case of Betti numbers, the parameter itself is computable in polynomial time. Thus while one generally expects quantum invariants to be hard to compute classically, our results suggest that the hardness of computing state sum invariants from Tambara-Yamagami categories arises from classical 3-manifold topology rather than the quantum nature of the algebraic input. 
    more » « less
  5. Miller, Claudia; Striuli, Janet; Witt, Emily E. (Ed.)
    Cubic surfaces in characteristic two are investigated from the point of view of prime characteristic commutative algebra. In particular, we prove that the non-Frobenius split cubic surfaces form a linear subspace of codimension four in the 19-dimensional space of all cubics, and that up to projective equivalence, there are finitely many non-Frobenius split cubic surfaces. We explicitly describe defining equations for each and characterize them as extremal in terms of configurations of lines on them. In particular, a (possibly singular) cubic surface in characteristic two fails to be Frobenius split if and only if no three lines on it form a “triangle”. 
    more » « less