skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Developing an Interview Protocol to Elicit Engineering Students’ Divergent Thinking Experiences
As problems become more complex, global, and interdisciplinary, engineers need to develop novel solutions and utilize resources, information, and tools in strategic and creative ways. Divergent thinking describes a process where multiple options, pathways, alternatives, or ideas are developed. For engineering students, divergent thinking can facilitate flexibility and expand opportunities considered when solving problems. To develop divergent thinking skills in engineering, we must understand how it is (and is not) facilitated in current engineering education experiences. Current pedagogy and resources available in engineering education on divergent thinking are limited. Thus, our research focused on exploring educational experiences in which students felt they considered divergent thinking. In this paper, we describe the iterative development of an interview protocol to elicit student experiences related to opportunities for divergent thinking. From the initial round of piloting, we found student awareness of divergent thinking was limited. Our findings highlight the need to structure questions in ways that align with students’ existing understandings of their engineering experiences. Our team made modifications to the protocol to address this, including using accessible terms to describe divergent thinking, asking students to describe one example project they remembered well, and. focusing questions within one step of the project selected by the student as most relevant to their exploration of alternatives. This iterative development of the protocol was successful in eliciting divergent thinking experiences across their work.  more » « less
Award ID(s):
1943805
PAR ID:
10414765
Author(s) / Creator(s):
Date Published:
Journal Name:
2022 ASEE Annual Conference & Exposition
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Engineers have the power to drive innovation and rethink the way the world is designed. However, a key practice often absent from engineering education is facilitating innovation and considering diverse perspectives through divergent thinking. We define divergence in engineering practices as exploring multiple alternatives in any stage of engineering processes. Currently, engineering education and research focuses on divergence primarily in the generation and development of design solutions, supported by idea generation methods such as Brainstorming and Design Heuristics. But in practice, there are many other opportunities throughout an engineering project where engineers may find it useful to explore multiple alternatives. When does divergent thinking take place during engineering problem solving as it is currently practiced? We conducted 90-minute semi-structured interviews with mechanical engineering practitioners working in varied setting to elicit their experiences with divergent thinking taking place in their engineering projects. The initial results document divergent thinking in six different areas of engineering design processes: 1) problem understanding, 2) problem-solving methods and strategies, 3) research and information gathering, 4) stakeholder identification, 5) considering potential solutions, and 6) anticipating implications of decisions. These findings suggest engineers find divergent thinking useful in multiple areas of engineering practice, and we suggest goals for developing divergent thinking skills in engineering education. 
    more » « less
  2. This work in progress (WIP) research paper describes student use of representations in engineering design. While iterative design is not unique to engineering, it is one of the most common methods that engineers use to address socio-technical problems. The use of representations is common across design methodologies. Representations are used in design to serve as external manifestations of internal thought processes that make abstract concepts tangible, enhance communication by providing a common language, enable iteration by serving as a low-effort way to explore ideas, encourage more empathetic design by capturing users' perspectives, visualize the problem space, and promote divergent thinking by providing different ways to visualize ideas. While representations are a key aspect of design, the effective use of representations is a learned process which is affected by other factors in students' education. This study sought to understand how students' perceptions of the role of representations in design changed over the course of a one-semester design course. Small student teams created representations in a three-stage process-problem exploration, convergence to possible solutions, and prototype generation-that captured their evolving understanding of a socio-technical issue and response to it. The authors hypothesize that using effective representations can help develop skills in convergence in undergraduate students; one of engineering's contributions to convergent problem solving is design. More specifically, this research looked at students' use of design representations to develop convergent understanding of ill-defined socio-technical problems. The research questions focus on how students use representations to structure sociotechnical design problems and how argumentation of their chosen solution path changed over time. To answer these questions this study analyzed student artifacts in a third-year design course supported by insights on the process of representation formation obtained from student journals on the design process and a self-reflective electronic portfolio of student work. Based on their prior experiences in engineering science classes, students initially viewed design representations as time-bound (e.g. homework) problems rather than as persistent tools used to build understanding. Over time their use of representations shifted to better capture and share understanding of the larger context in which projects were embedded. The representations themselves became valued reflections on their own level of understanding of complex problems, serving as a self-reflective surface for the status of the larger design problem. 
    more » « less
  3. Electrical and computer engineering technologies have evolved into dynamic, complex systems that profoundly change the world we live in. Designing these systems requires not only technical knowledge and skills but also new ways of thinking and the development of social, professional and ethical responsibility. A large electrical and computer engineering department at a Midwestern public university is transforming to a more agile, less traditional organization to better respond to student, industry and society needs. This is being done through new structures for faculty collaboration and facilitated through departmental change processes. Ironically, an impetus behind this effort was a failed attempt at department-wide curricular reform. This failure led to the recognition of the need for more systemic change, and a project emerged from over two years of efforts. The project uses a cross-functional, collaborative instructional model for course design and professional formation, called X-teams. X-teams are reshaping the core technical ECE curricula in the sophomore and junior years through pedagogical approaches that (a) promote design thinking, systems thinking, professional skills such as leadership, and inclusion; (b) contextualize course concepts; and (c) stimulate creative, socio-technical-minded development of ECE technologies. An X-team is comprised of ECE faculty members including the primary instructor, an engineering education and/or design faculty member, an industry practitioner, context experts, instructional specialists (as needed to support the process of teaching, including effective inquiry and inclusive teaching) and student teaching assistants. X-teams use an iterative design thinking process and reflection to explore pedagogical strategies. X-teams are also serving as change agents for the rest of the department through communities of practice referred to as Y-circles. Y-circles, comprised of X-team members, faculty, staff, and students, engage in a process of discovery and inquiry to bridge the engineering education research-to-practice gap. Research studies are being conducted to answer questions to understand (1) how educators involved in X-teams use design thinking to create new pedagogical solutions; (2) how the middle years affect student professional ECE identity development as design thinkers; (3) how ECE students overcome barriers, make choices, and persist along their educational and career paths; and (4) the effects of department structures, policies, and procedures on faculty attitudes, motivation and actions. This paper will present the efforts that led up to the project, including failures and opportunities. It will summarize the project, describe related work, and present early progress implementing new approaches. 
    more » « less
  4. Divergent thinking is the process of exploring many options and perspectives and is a key part of effective and inclusive engineering outcomes. In engineering education, divergent exploration is often applied within idea generation; however, many other stages in engineering projects may benefit from divergent exploration, such as defining problems, identifying stakeholders, selecting problem solving approaches, and understanding potential implications of engineering decisions. Professional engineers often struggle to identify and manage diverse perspectives, and little is known about the practice of divergent exploration in engineering projects. To investigate, we interviewed a mechanical engineer about her exploration practices in a past professional project. From her striking examples of divergent thinking and barriers to its practice, we constructed a narrative-based educational tool for students, educators, and practitioners. The engineer’s firsthand experiences demonstrate that to think divergently, engineers must understand system constraints, explore widely, seek information from many sources, take risks, seek varied perspectives, and explore multiple methods to solve problems. 
    more » « less
  5. This project will contribute to the national need for well-educated scientists, mathematicians, engineers, and technicians by supporting the retention and graduation of high-achieving, low-income students with demonstrated financial need at Minnesota State University, Mankato. Over its six year duration, this project will fund scholarships to 120 unique full-time students who are pursuing Bachelor of Science degrees in engineering. First semester junior, primarily transfer, students at Iron Range Engineering will receive scholarships for one semester. The Iron Range Engineering (IRE) STEM Scholars Program provides a financially sustainable pathway for students across the nation to graduate with an engineering degree and up to two years of industry experience. Students typically complete their first two years of engineering coursework at community colleges across the country. Students then join IRE and spend one transitional semester gaining training and experience to equip them with the technical, design, and professional skills needed to succeed in the engineering workforce. During the last two years of their education, IRE students work in industry, earning an engineering intern salary, while being supported in their technical and professional development by professors, learning facilitators, and their own peers. The IRE STEM Scholars project will provide access to a financially responsible engineering degree for low-income students by financially supporting them during the transitional semester, which has two financial challenges: university tuition costs are higher than their previous community college costs, and the semester occurs before they are able to earn an engineering co-op income. In addition, the project will provide personalized mentorship throughout students’ pathway to graduation, such as weekly conversations with a mentor. By providing these supports, the IRE STEM Scholars project aims to prepare students to be competitive applicants for the engineering workforce with career development and engineering co-op experience. Because community colleges draw relatively representative proportions of students from a variety of backgrounds, this project has the potential to learn how transfer pathways and co-op education can support financially sustainable pathways to engineering degrees for a more diverse group of students and contribute to the development of a diverse, competitive engineering workforce. The overall goal of this project is to increase STEM degree completion of low-income, high-achieving undergraduates with demonstrated financial need. As part of the scope of this project, a concurrent mixed-methods research study will be done on engineering students’ thriving, specifically their identity, belonging, motivation, and overall wellbeing (or mental and physical health). Student outcomes have previously been measured primarily through academic markers such as graduation rates and GPA. In addition to these outcomes, this project explores ways to better support overall student thriving. This study will address the following research questions: How do undergraduate students’ engineering identity and belongingness develop over time in a co-op-based engineering program? How do undergraduate students’ motivation and identity connect to overall wellbeing in a co-op-based engineering program? In the first year of the IRE STEM Scholars Project, initial interview data describe scholars’ sense of belonging in engineering, prior to their first co-op experiences and survey data describe IRE students’ experiences in co-op and overall sense of belonging. Future work will utilize these values to identify ways to better support the IRE STEM scholars’ identity development as they move into their first co-op experiences. This project is funded by NSF’s Scholarships in Science, Technology, Engineering, and Mathematics program, which seeks to increase the number of low-income academically talented students with demonstrated financial need who earn degrees in STEM fields. It also aims to improve the education of future STEM workers, and to generate knowledge about academic success, retention, transfer, graduation, and academic/career pathways of low-income students. 
    more » « less