skip to main content


Title: Role of Polymer–Nanoparticle Interactions on the Fracture Toughness of Polymer-Infiltrated Nanoparticle Films
Award ID(s):
1720530
PAR ID:
10414851
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Macromolecules
Volume:
56
Issue:
1
ISSN:
0024-9297
Page Range / eLocation ID:
122 to 135
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Abstract

    It is demonstrated that the addition of nanoparticles can decrease the viscosity of an entangled polymer matrix (plasticization). While there has been considerable effort in understanding the role of bare nanoparticles on viscosity, the corresponding study on grafted particles is nascent. Two nanometer radius zirconia fillers with a bimodal population of grafted PDMS is used. Two fillers are considered: one has grafted chains with a molecular weight, Mg, less than the entanglement M, Mg < Me(ZrO21k 10k), and the other filler has grafted chains M > Mc(the critical Me) (ZrO21k 36k). The ZrO21k 10k composites exhibit plasticization for large matrix molecular weight Mm. The ZrO21k 36k composites, in contrast, have Einstein‐like behavior. The plasticization effects are either due to: the small filler size relative to the tube diameter or an increase in chain mobility at the interface due to autophobic dewetting.

     
    more » « less
  3. When polymer–nanoparticle (NP) attractions are sufficiently strong, a bound polymer layer with a distinct dynamic signature spontaneously forms at the NP interface. A similar phenomenon occurs near a fixed attractive substrate for thin polymer films. While our previous simulations fixed the NPs to examine the dilute limit, here, we allow the NP to move. Our goal is to investigate how NP mobility affects the signature of the bound layer. For small NPs that are relatively mobile, the bound layer is slaved to the motion of the NP, and the signature of the bound layer relaxation in the intermediate scattering function essentially disappears. The slow relaxation of the bound layer can be recovered when the scattering function is measured in the NP reference frame, but this process would be challenging to implement in experimental systems with multiple NPs. Instead, we use the counterintuitive result that the NP mass affects its mobility in the nanoscale limit, along with the more expected result that the bound layer increases the effective NP mass, to suggest that the signature of the bound polymer manifests as a change in NP diffusivity. These findings allow us to rationalize and quantitatively understand the results of recent experiments focused on measuring NP diffusivity with either physically adsorbed or chemically end-grafted chains. 
    more » « less