skip to main content


Title: Suspension bath bioprinting and maturation of anisotropic meniscal constructs
Abstract Due to limited intrinsic healing capacity of the meniscus, meniscal injuries pose a significant clinical challenge. The most common method for treatment of damaged meniscal tissues, meniscectomy, leads to improper loading within the knee joint, which can increase the risk of osteoarthritis. Thus, there is a clinical need for the development of constructs for meniscal repair that better replicate meniscal tissue organization to improve load distributions and function over time. Advanced three-dimensional bioprinting technologies such as suspension bath bioprinting provide some key advantages, such as the ability to support the fabrication of complex structures using non-viscous bioinks. In this work, the suspension bath printing process is utilized to print anisotropic constructs with a unique bioink that contains embedded hydrogel fibers that align via shear stresses during printing. Constructs with and without fibers are printed and then cultured for up to 56 d in vitro in a custom clamping system. Printed constructs with fibers demonstrate increased cell and collagen alignment, as well as enhanced tensile moduli when compared to constructs printed without fibers. This work advances the use of biofabrication to develop anisotropic constructs that can be utilized for the repair of meniscal tissue.  more » « less
Award ID(s):
1720530
NSF-PAR ID:
10414890
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Biofabrication
Volume:
15
Issue:
3
ISSN:
1758-5082
Page Range / eLocation ID:
035003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Bioprinting is an additive manufacturing technique that combines living cells, biomaterials, and biological molecules to develop biologically functional constructs. Three-dimensional (3D) bioprinting is commonly used as anin vitromodeling system and is a more accurate representation ofin vivoconditions in comparison to two-dimensional cell culture. Although 3D bioprinting has been utilized in various tissue engineering and clinical applications, it only takes into consideration the initial state of the printed scaffold or object. Four-dimensional (4D) bioprinting has emerged in recent years to incorporate the additional dimension of time within the printed 3D scaffolds. During the 4D bioprinting process, an external stimulus is exposed to the printed construct, which ultimately changes its shape or functionality. By studying how the structures and the embedded cells respond to various stimuli, researchers can gain a deeper understanding of the functionality of native tissues. This review paper will focus on the biomaterial breakthroughs in the newly advancing field of 4D bioprinting and their applications in tissue engineering and regeneration. In addition, the use of smart biomaterials and 4D printing mechanisms for tissue engineering applications is discussed to demonstrate potential insights for novel 4D bioprinting applications. To address the current challenges with this technology, we will conclude with future perspectives involving the incorporation of biological scaffolds and self-assembling nanomaterials in bioprinted tissue constructs.

     
    more » « less
  2. Abstract

    The extrusion printing of inks into suspension baths is an exciting tool, as it allows the printing of diverse and soft hydrogel inks into 3D space without the need for layer‐by‐layer fabrication. However, this printing process is complex and there have been limited studies to experimentally and computationally characterize the process. In this work, hydrogel inks (i.e., gelatin methacrylamide (GelMA)), suspension baths (i.e., agarose, Carbopol), and the printing process are examined via rheological, computational, and experimental analyses. Rheological data on various hydrogel inks and suspension baths is utilized to develop computational printing simulations based on Carreau constitutive viscosity models of the printing of inks within suspension baths. These results are then compared to experimental outcomes using custom print designs where features such as needle translation speed, defined in this work as print speed, are varied and printed filament resolution is quantified. Results are then used to identify print parameters for the printing of a GelMA ink into a unique guest–host hyaluronic acid suspension bath. This work emphasizes the importance of key rheological properties and print parameters for suspension bath printing and provides a computational model and experimental tools that can be used to inform the selection of print settings.

     
    more » « less
  3. Abstract

    Current therapies for nerve regeneration within injured tissues have had limited success due to complicated neural anatomy and inhibitory barriers in situ. Recent advancements in 3D bioprinting technologies have enabled researchers to develop novel 3D scaffolds with complex architectures in an effort to mitigate the challenges that beset reliable and defined neural tissue regeneration. Among several possible neuroregenerative treatment approaches that are being explored today, 3D bioprinted scaffolds have the unique advantage of being highly modifiable, which promotes greater resemblance to the native biological architecture of in vivo systems. This high architectural similarity between printed constructs and in vivo structures is thought to facilitate a greater capacity for repair of damaged nerve tissues. In this review, advances of several 3D bioprinting methods are introduced, including laser bioprinting, inkjet bioprinting, and extrusion‐based printing. In addition, the emergence of 4D printing is discussed, which adds a dimension of transformation over time to traditional 3D printing. Finally, an overview of emerging trends in advanced bioprinting materials is provided and their therapeutic potential for application in neural tissue regeneration is evaluated in both the central nervous system and the peripheral nervous system.

     
    more » « less
  4. Replacement therapy for the salivary gland (SG) remains an unmet clinical need. Xerostomia (“dry mouth”) due to hyposalivation can result from injury or disease to the SG, such as salivary acinar death caused by radiation therapy (RT) for head and neck squamous cell carcinoma (HNSCC). Currently, only palliative treatments exist for xerostomia, and many patients endure deteriorated oral health and poor quality of life. Tissue engineering could offer a permanent solution for SG replacement by isolating healthy SG tissues prior to RT, expanding its cells in vitro, and recreating a functional salivary neogland for implantation post-RT. 3D bioprinting methods potentiate spatial cell deposition into defined hydrogel-based architectures, mimicking the thin epithelia developed during the complex branching morphogenesis of SG. By leveraging a microfluidics-based bioprinter with coaxial polymer and crosslinker streams, we fabricated thin, biocompatible, and reproducible hydrogel features that recapitulate the thin epithelia characteristics of SG. This flexible platform enabled two modes of printing: we produced solid hydrogel fibers, with diameters <100 μm, that could be rastered to create larger mm-scale structures. By a second method, we generated hollow tubes with wall thicknesses ranging 45-80 μm, total tube diameters spanning 0.6 – 2.2 mm, and confirmed tube patency. In both cases, SG cells could be printed within the thin hydrogel features, with preserved phenotype and high viability, even at high density (5.0 × 10^6 cells/mL). Our work demonstrates hydrogel feature control across multiple length scales, and a new paradigm for addressing SG restoration by creating microscale tissue engineered components. 
    more » « less
  5. Abstract

    Bioprinting has emerged as an advanced method for fabricating complex 3D tissues. Despite the tremendous potential of 3D bioprinting, there are several drawbacks of current bioinks and printing methodologies that limit  the ability to print elastic and highly vascularized tissues. In particular, fabrication of complex biomimetic structure that are entirely based on 3D bioprinting is still challenging primarily due to the lack of suitable bioinks with high printability, biocompatibility, biomimicry, and proper mechanical properties. To address these shortcomings, in this work the use of recombinant human tropoelastin as a highly biocompatible and elastic bioink for 3D printing of complex soft tissues is demonstrated. As proof of the concept, vascularized cardiac constructs are bioprinted and their functions are assessed in vitro and in vivo. The printed constructs demonstrate endothelium barrier function and spontaneous beating of cardiac muscle cells, which are important functions of cardiac tissue in vivo. Furthermore, the printed construct elicits minimal inflammatory responses, and is shown to be efficiently biodegraded in vivo when implanted subcutaneously in rats. Taken together, these results demonstrate the potential of the elastic bioink for printing 3D functional cardiac tissues, which can eventually be used for cardiac tissue replacement.

     
    more » « less