skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A synthesis of hydroclimatic, ecological, and socioeconomic data for transdisciplinary research in the Mekong
Abstract The Mekong River basin (MRB) is a transboundary basin that supports livelihoods of over 70 million inhabitants and diverse terrestrial-aquatic ecosystems. This critical lifeline for people and ecosystems is under transformation due to climatic stressors and human activities (e.g., land use change and dam construction). Thus, there is an urgent need to better understand the changing hydrological and ecological systems in the MRB and develop improved adaptation strategies. This, however, is hampered partly by lack of sufficient, reliable, and accessible observational data across the basin. Here, we fill this long-standing gap for MRB by synthesizing climate, hydrological, ecological, and socioeconomic data from various disparate sources. The data— including groundwater records digitized from the literature—provide crucial insights into surface water systems, groundwater dynamics, land use patterns, and socioeconomic changes. The analyses presented also shed light on uncertainties associated with various datasets and the most appropriate choices. These datasets are expected to advance socio-hydrological research and inform science-based management decisions and policymaking for sustainable food-energy-water, livelihood, and ecological systems in the MRB.  more » « less
Award ID(s):
2127643 1752729
PAR ID:
10414952
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Scientific Data
Volume:
10
Issue:
1
ISSN:
2052-4463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Numerous studies have examined the reliability of various precipitation products over the Mekong River Basin (MRB) and modeled its basin hydrology. However, there is a lack of comprehensive studies on precipitation‐induced uncertainties in hydrological simulations using process‐based land surface models. This study examines the propagation of precipitation uncertainty into hydrological simulations over the entire MRB using the Community Land Model version 5 (CLM5) at a high spatial resolution of 0.05° (∼5 km) and without any parameter calibration. Simulations conducted using different precipitation datasets are compared to investigate the discrepancies in streamflow, terrestrial water storage (TWS), soil moisture, and evapotranspiration (ET) caused by precipitation uncertainty. Results indicate that precipitation is a key determinant of simulated streamflow in the MRB; peak flow and soil moisture are particularly sensitive to precipitation input. Further, precipitation data with a higher spatial resolution did not improve the simulations, contrary to the common perception that using meteorological forcing with higher spatial resolution would improve hydrological simulations. In addition, since high flow indicators are particularly influenced by precipitation data, the choice of precipitation data could directly impact flood pulse simulations in the MRB. Notable differences are also found among TWS, soil moisture, and ET simulated using different precipitation products. Moreover, TWS, soil moisture, and ET exhibit a varying degree of sensitivity to precipitation uncertainty. This study provides crucial insights on precipitation‐induced uncertainties in process‐based hydrological modeling and uncovers these uncertainties in the MRB. 
    more » « less
  2. Abstract. In the context of changing climate and increasing waterdemand, large-scale hydrological models are helpful for understanding andprojecting future water resources across scales. Groundwater is a criticalfreshwater resource and strongly controls river flow throughout the year. Itis also essential for ecosystems and contributes to evapotranspiration,resulting in climate feedback. However, groundwater systems worldwide arequite diverse, including thick multilayer aquifers and thin heterogeneousaquifers. Recently, efforts have been made to improve the representation ofgroundwater systems in large-scale hydrological models. The evaluation ofthe accuracy of these model outputs is challenging because (1) they areapplied at much coarser resolutions than hillslope scale, (2) they simplifygeological structures generally known at local scale, and (3) they do notadequately include local water management practices (mainly groundwaterpumping). Here, we apply a large-scale hydrological model (CWatM), coupledwith the groundwater flow model MODFLOW, in two different climatic,geological, and socioeconomic regions: the Seewinkel area (Austria) and theBhima basin (India). The coupled model enables simulation of the impact ofthe water table on groundwater–soil and groundwater–river exchanges,groundwater recharge through leaking canals, and groundwater pumping. Thisregional-scale analysis enables assessment of the model's ability tosimulate water tables at fine spatial resolutions (1 km for CWatM, 100–250 m for MODFLOW) and when groundwater pumping is well estimated. Evaluatinglarge-scale models remains challenging, but the results show that thereproduction of (1) average water table fluctuations and (2) water tabledepths without bias can be a benchmark objective of such models. We foundthat grid resolution is the main factor that affects water table depth biasbecause it smooths river incision, while pumping affects time fluctuations.Finally, we use the model to assess the impact of groundwater-basedirrigation pumping on evapotranspiration, groundwater recharge, and watertable observations from boreholes. 
    more » « less
  3. Wetlands provide essential ecosystem services, including nutrient cycling, flood protection, and biodiversity support, that are sensitive to changes in wetland hydrology. Wetland hydrological inputs come from precipitation, groundwater discharge, and surface run-off. Changes to these inputs via climate variation, groundwater extraction, and land development may alter the timing and magnitude of wetland inundation. Here, we use a long-term (14-year) comparative study of 152 depressional wetlands in west-central Florida to identify sources of variation in wetland inundation during two key time periods, 2005–2009 and 2010–2018. These time periods are separated by the enactment of water conservation policies in 2009, which included regional reductions in groundwater extraction. We investigated the response of wetland inundation to the interactive effects of precipitation, groundwater extraction, surrounding land development, basin geomorphology, and wetland vegetation class. Results show that water levels were lower and hydroperiods were shorter in wetlands of all vegetation classes during the first (2005–2009) time period, which corresponded with low rainfall conditions and high rates of groundwater extraction. Under water conservation policies enacted in the second (2010–2018) time period, median wetland water depths increased 1.35 m and median hydroperiods increased from 46 % to 83 %. Water-level variation was additionally less sensitive to groundwater extraction. The increase in inundation differed among vegetation classes with some wetlands not displaying signs of hydrological recovery. After accounting for effects of several explanatory factors, inundation still varied considerably among wetlands, suggesting a diversity of hydrological regimes, and thus ecological function, among individual wetlands across the landscape. Policies seeking to balance human water demand with the preservation of depressional wetlands would benefit by recognizing the heightened sensitivity of wetland inundation to groundwater extraction during periods of low precipitation. 
    more » « less
  4. Abstract Numerous studies have examined the changes in streamflow in the Mekong River Basin (MRB) using observations and hydrological modeling; however, there is a lack of integrated modeling studies that explicitly simulate the natural and human‐induced changes in flood dynamics over the entire basin. Here we simulate the river‐floodplain‐reservoir inundation dynamics over the MRB for 1979–2016 period using a newly integrated, high‐resolution (~5 km) river hydrodynamics‐reservoir operation model. The framework is based on the river‐floodplain hydrodynamic model CaMa‐Flood in which a new reservoir operation scheme is incorporated by including 86 existing MRB dams. The simulated flood extent is downscaled to a higher resolution (~90 m) to investigate fine‐scale inundation dynamics, and results are validated with ground‐ and satellite‐based observations. It is found that the historical variations in surface water storage have been governed primarily by climate variability; the impacts of dams on river‐floodplain hydrodynamics were marginal until 2009. However, results indicate that the dam impacts increased noticeably in 2010 when the basin‐wide storage capacity doubled due to the construction of new mega dams. Further, results suggest that the future flood dynamics in the MRB would be considerably different than in the past even without climate change and additional dams. However, it is also found that the impacts of dams can largely vary depending on reservoir operation strategies. This study is expected to provide the basis for high‐resolution river‐floodplain‐reservoir modeling for a holistic assessment of the impacts of dams and climate change on the floodpulse‐dependent hydro‐ecological systems in the MRB and other global regions. 
    more » « less
  5. Abstract Soil erosion and sedimentation problems remain a major water quality concern for making watershed management policies in the Mississippi River Basin (MRB). It is unclear whether the observed decreasing trend of stream suspended sediment loading to the mouth of the MRB over the last eight decades truly reflects a decline in upland soil erosion in this large basin. Here, we improved a distributed regional land surface model, the Dynamic Land Ecosystem Model, to evaluate how climate and land use changes have impacted soil erosion and sediment yield over the entire MRB during the past century. Model results indicate that total sediment yield significantly increased during 1980–2018, despite no significant increase in annual precipitation and runoff. The increased soil erosion and sediment yield are mainly driven by intensified extreme precipitation (EP). Spatially, we found notable intensified EP events in the cropland‐dominated Midwest region, resulting in a substantial increase in soil erosion and sediment yield. Land use change played a critical role in determining sediment yield from the 1910s to the 1930s, thereafter, climate variability increasingly became the dominant driver of soil erosion, which peaked in the 2010s. This study highlights the increasing influences of extreme climate in affecting soil erosion and sedimentation, thus, water quality. Therefore, existing forest and cropland Best Management Practices should be revisited to confront the impacts of climate change on water quality in the MRB. 
    more » « less