An experimental study is performed to investigate the quasi-static fracture toughness and damage monitoring capabilities of liquid metal (75.5% Gallium/24.5% Indium) reinforced intraply glass/carbon hybrid composites. Two different layups (G-0, where glass fibers are along the crack propagation direction; C-0, where carbon fibers are along the crack propagation direction) and two different weight percentages of liquid metal (1% and 2%) are considered in the fabrication of the composites. A novel four-probe technique is employed to determine the piezo-resistive damage response under mode-I fracture loading conditions. The effect of layups and liquid metal concentrations on fracture toughness and changes in piezo-resistance response is discussed. The C-composite without liquid metal demonstrated higher fracture toughness compared to that of the G-composite due to carbon fiber breakage. The addition of liquid metal decreases the fracture initiation toughness of both G- and C-composites. Scanning electron microscopy images show that liquid metal takes the form of large liquid metal pockets and small spherical droplets on the fracture surfaces. In both C- and G-composites, the peak resistance change of composites with 2% liquid metal is substantially lower than that of both no-liquid metal and 1% liquid metal composites.
more »
« less
Direct ink writing of tough, stretchable silicone composites
In this work, we report 3D printable soft composites that are simultaneously stretchable and tough. The matrix of the composite consists of polydimethylsiloxane containing octuple hydrogen bonding sites, resulting in a material significantly tougher than conventional polydimethylsiloxane. Short glass fibers are also added to the material. Prior to solvent evaporation, the material possesses a viscoelastic yield stress making it suitable for printing via direct ink writing. We mechanically characterize the printed composite, including fracture tests. We observe robust crack deflection and delay of catastrophic failure, leading to measured toughness values up to 2 00 000 J m −2 for specimens with 5 vol% glass fibers. The printed composites exhibit an unprecedented combination of stiffness, stretchability, and toughness.
more »
« less
- Award ID(s):
- 1720530
- PAR ID:
- 10414972
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 18
- Issue:
- 38
- ISSN:
- 1744-683X
- Page Range / eLocation ID:
- 7341 to 7347
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Additive manufacturing (AM) of polymer composites with continuous fibers could play a major role in the future of aerospace and beyond but will require printed materials to achieve new levels of reliability. This study characterized the strength distribution of selected thermoplastic matrix composites as a func- tion of printing via fused filament fabrication (FFF). Experimental and commercial composite filaments of continuous carbon or Kevlar fibers were printed with volume fraction (Vf) ranging from approximately 28 to 56 %. The strength was evaluated under uniaxial tension after specific stages of printing and Weibull statistics were applied to characterize the strength distribution. There was a significant reduction in strength of the printed material with respect to the unprinted condition, regardless of reinforcement type, fiber volume fraction or printer used. Damage introduced by feed extrusion of the filament, and fiber failures induced at material deposition were most detrimental. For carbon fiber filaments, the reduc- tion ranged from approximately 10 % for an experimental material to over 60 % for a commercial filament. There was no correlation in the strength degradation or variability with Vf. The prevention of process-related fiber damage is key to advancing AM for continuous fiber composite and application to designs intended for stress-critical applications.more » « less
-
This study investigates a neoteric approach in manufacturing lunar regolith-filled shape memory vitrimer (SMV) composites for extraterrestrial applications. A SMV with robust mechanical properties was combined with locally available lunar regolith to form a composite material. Fourier Transfer Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM), Thermogravimetric Analysis (TGA), and X-ray fluorescence (XRF) were used to characterize the resin, the regolith simulant, and the prepared SMV-regolith composites. We explored conventional synthesis as well as 3D printing methods for manufacturing the composite. Glass fabric-reinforced laminated composites were also prepared to evaluate the impact tolerance and damage healing efficiency. Compressive strength, flexural strength, and impact resistance of the composite were tested at both room and elevated temperatures. A compressive strength of 96.0 MPa and 5.4 MPa were recorded for composite with 40 wt% regolith ratio at room and elevated temperatures, respectively. The glass fabric reinforced SMV-regolith laminate exhibited a bending strength of 232.7 MPa, good impact tolerance under low-velocity impact test, and good healing efficiency up to two damage healing cycles. The 3D printed SMV-regolith composite using a liquid crystal display (LCD)-based printer exhibited a good thermomechanical property with a compressive and tensile strength of 139.16 MPa and 13.99 MPa, respectively, and a good shape memory effect. However, the LCD-based printing using vat-photopolymerization limits the size of the printed samples. Nonetheless, this study shows that utilization of regolith to form advanced composite is possible. SMV regolith composite is a promising material for lunar base applications due to its simple manufacturing process, excellent mechanical properties, and low energy consumption.more » « less
-
Polyurethane (PU) elastomers are among the most used rubberlike materials due to their combined merits, including high abrasion resistance, excellent mechanical properties, biocompatibility, and good processing performance. A PU elastomer exhibits pronounced hysteresis, leading to a high toughness on the order of 104 J/m2. However, toughness gained from hysteresis is ineffective to resist crack growth under cyclic load, causing a fatigue threshold below 100 J/m2. Here we report a fatigue-resistant PU fiber–matrix composite, using commercially available Spandex as the fibers and PU elastomer as the matrix. The Spandex fibers are stiff, strong, and stretchable. The matrix is soft, tough, and stretchable. We describe a pullout test to measure the adhesion toughness between the fiber and matrix. The test is highly reproducible, showing an adhesion toughness of 3170 J/m2. The composite shows a maximum stretchability of 6.0, a toughness of 16.7 kJ/m2, and a fatigue threshold of 3900 J/m2. When a composite with a precut crack is stretched, the soft matrix causes the crack tip to blunt greatly, which distributes high stress over a long segment of the Spandex fiber ahead the crack tip. This deconcentration of stress makes the composite resist the growth of cracks under monotonic and cyclic loads. The PU elastomer composites open doors for realistic applications of fatigue-resistant elastomersmore » « less
-
Abstract Cultivated natural fibers have a huge possibility for green and sustainable reinforcement for polymers, but their limited load-bearing ability and flammability prevent them from wide applications in composites. According to the beam theory, normal stress is the maximum at the outermost layers but zero at the mid-plane under bending (with (non)linear strain distribution). Shear stress is the maximum at the mid-plane but manageable for most polymers. Accordingly, a laminated composite made of hybrid fiber-reinforced shape memory photopolymer was developed, incorporating strong synthetic glass fibers over a weak core of natural hemp fibers. Even with a significant proportion of natural hemp fibers, the mechanical properties of the hybrid composites were close to those reinforced solely with glass fibers. The composites exhibited good shape memory properties, with at least 52% shape fixity ratio and 71% shape recovery ratio, and 24 MPa recovery stress. After 40 s burning, a hybrid composite still maintained 83.53% of its load carrying capacity. Therefore, in addition to largely maintaining the load carrying capacity through the hybrid reinforcement design, the use of shape memory photopolymer endowed a couple of new functionalities to the composites: the plastically deformed laminated composite beam can largely return to its original shape due to the shape memory effect of the polymer matrix, and the flame retardancy of the polymer matrix makes the flammable hemp fiber survive the fire hazard. The findings of this study present exciting prospects for utilizing low-strength and flammable natural fibers in multifunctional load-bearing composites that possess both flame retardancy and shape memory properties.more » « less
An official website of the United States government

