The anomalous Nernst effect, which generates an out-of-plane charge voltage in response to a thermal gradient perpendicular to the magnetization of a ferromagnet, can play a significant role in many spintronic devices where large thermal gradients exist. Since they typically include features deep within the submicron regime, nonlocal spin valves can be made very sensitive to this effect by lowering the substrate thermal conductance. Here, we use nonlocal spin valves suspended on thin silicon nitride membranes to determine the temperature dependence of the anomalous Nernst coefficient of 35 nm thick permalloy (Ni80Fe20) from 78 K to 300 K. In a device with a simple ferromagnet geometry, the transverse Seebeck coefficient shows a weak temperature dependence, with values at all T near 2.5 μV/K. Assuming previously measured values of the Seebeck coefficient for permalloy, which has a near-linear dependence on T, leads to a low temperature upturn in the anomalous Nernst coefficient RN. We also show that the temperature dependence of this coefficient is different when a constricted nanowire is used as the ferromagnetic detector element.
more »
« less
Nernst coefficient measurements in two-dimensional materials
Abstract The discovery of two-dimensional (2D) ferromagnets and antiferromagnets with topologically nontrivial electronic band structures makes the study of the Nernst effect in 2D materials of great importance and interest. To measure the Nernst coefficient of 2D materials, the detection of the temperature gradient is crucial. Although the micro-fabricated metal wires provide a simple but accurate way for temperature detection, a linear-response assumption that the temperature gradient is a constant is still necessary and has been widely used to evaluate the temperature gradient. However, with the existence of substrates, this assumption cannot be precise. In this study, we clearly show that the temperature gradient strongly depends on the distance from the heater by both thermoelectric transport and thermoreflectance measurements. Fortunately, both measurements show that the temperature gradient can be well described by a linear function of the distance from the heater. This linearity is further confirmed by comparing the measured Nernst coefficient to the value calculated from the generalized Mott’s formula. Our results demonstrate a precise way to measure the Nernst coefficient of 2D materials and would be helpful for future studies.
more »
« less
- Award ID(s):
- 1653268
- PAR ID:
- 10415148
- Date Published:
- Journal Name:
- Journal of Physics D: Applied Physics
- Volume:
- 55
- Issue:
- 45
- ISSN:
- 0022-3727
- Page Range / eLocation ID:
- 455303
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Nernst coefficient measurements are a classic approach to investigate charge carrier scattering in both metals and semiconductors. However, such measurements are not commonly performed, despite the potential to inform material design strategies in applications such as thermoelectricity. As dedicated instruments are extremely scarce, we present here a room temperature apparatus to measure the low field Nernst coefficient (and magneto-Seebeck coefficient) in bulk polycrystalline samples. This apparatus is specifically designed to promote accurate and facile use, with the expectation that such an instrument will make Nernst measurements de rigueur. In this apparatus, sample loading and electrical contacts are all pressure-based and alignment is automatic. Extremely stable thermal control (10 mK of fluctuation when ΔT = 1 K) is achieved from actively cooled thermoelectric modules that operate as heaters or Peltier coolers. Magneto-Seebeck measurements are integrated into the system to correct for residual probe offsets. Data from the apparatus are provided on bulk polycrystalline samples of bismuth, InSb, and SnTe, including raw data to illustrate the process of calculating the Nernst coefficient. Finally, we review how Nernst measurements, in concert with Seebeck, Hall, and electrical resistivity, can be analyzed via the Boltzmann equation in the relaxation time approximation to self-consistently predict the Fermi level, effective mass, and energy-dependent relaxation time.more » « less
-
As spin caloritronic measurements become increasingly common techniques for characterizing material properties, it is important to quantify potentially confounding effects. We report measurements of the Nernst–Ettingshausen response from room temperature to 5 K in thin film wires of Pt and W, metals commonly used as inverse spin Hall detectors in spin Seebeck characterization. Johnson–Nyquist noise thermometry is used to assess the temperature change in the metals with heater power at low temperatures, and the thermal path is analyzed via finite-element modeling. The Nernst–Ettingshausen response of W is found to be approximately temperature-independent, while the response of Pt increases at low temperatures. These results are discussed in the context of theoretical expectations and the possible role of magnetic impurities in Pt.more » « less
-
Boiling heat transfer associated with bubble growth is perhaps one of the most efficient cooling methodologies due to its large latent heat during phase change. Despite the significant advancements, numerous questions remain regarding the fundamentals of bubble growth mechanisms, which is a major source of enhanced heat dissipation. This work aims to accurately measure three-dimensional (3D), space and time-resolved, local liquid temperature distributions surrounding a growing bubble to quantify the heat transfer in the superheated liquid layer during bubble growth. The dual tracer laser-induced fluorescence thermometry technique combined with high-speed imaging captures transient 2D temperature distributions, that will render 3D temperature distributions by combining multiple 2D layers, within a 0.3 °C accuracy at a 30 μm resolution. Two fluorescent dyes, fluorescein and sulforhodamine B, were used to measure transient temperatures, by account of their temperature-sensitive emissions. The results show that the temperature close to the heated surface and bubble interface exhibits an acute transient behavior at the time of bubble departure. The growing bubble works as a pump to remove heat from the surface with a peak temperature difference of up to 10 °C during its growth and departure. The experimental results were compared with previously reported studies to validate the accuracy of the technique. It was found that the heat transfer coefficient close to the bubble interface and heater is approximately 1.3 times higher than the heat transfer coefficient in the bulk liquid.more » « less
-
Abstract Van der Waals heterostructures offer great versatility to tailor unique interactions at the atomically flat interfaces between dissimilar layered materials and induce novel physical phenomena. By bringing monolayer 1 T’ WTe2, a two-dimensional quantum spin Hall insulator, and few-layer Cr2Ge2Te6, an insulating ferromagnet, into close proximity in an heterostructure, we introduce a ferromagnetic order in the former via the interfacial exchange interaction. The ferromagnetism in WTe2manifests in the anomalous Nernst effect, anomalous Hall effect as well as anisotropic magnetoresistance effect. Using local electrodes, we identify separate transport contributions from the metallic edge and insulating bulk. When driven by an AC current, the second harmonic voltage responses closely resemble the anomalous Nernst responses to AC temperature gradient generated by nonlocal heater, which appear as nonreciprocal signals with respect to the induced magnetization orientation. Our results from different electrodes reveal spin-polarized edge states in the magnetized quantum spin Hall insulator.more » « less
An official website of the United States government

