skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Weird and Wonderful World of Worms
Animals with long, skinny bodies are often called “worms,” but there are many kinds of worms—even in the ocean. Annelids (segmented worms) include garden earthworms, but their ocean relatives come in many colors, shapes, and sizes. Some are so small that they live between grains of sand, while others can be longer than a human and eat fish! Marine worms are essential to the ocean food web, as both predators and prey. They help create homes for plants and animals by burrowing and building tubes in ocean sediments. Scientists are still discovering new worm species, and there are still many mysteries about how worms eat, why they live in the places they do, and what roles they play in ocean ecosystems. Worms are a fascinating and important part of ocean communities.  more » « less
Award ID(s):
1844910
PAR ID:
10415276
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Frontiers for Young Minds
Volume:
10
ISSN:
2296-6846
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many animals are herbivores, which means they get all their nutrients from eating plants. American pikas are cute rabbit relatives that eat plants in the mountains. But alpine winters are harsh, so pikas spend their entire summer gathering and storing plants to eat under the winter snow. Just like people, pikas in Colorado have a favorite food: a plant called alpine avens. This plant species is a special pika snack because it contains natural preservatives called phenolics, which keep the food fresh all winter. We studied how climate change is affecting this important feature of the pika’s favorite meal. Alpine avens contains more phenolics now than it did 30 years ago, so they preserve better in storage. But there is a catch: these preservatives can be hard to digest. Studies like this help us start to understand the many complicated ways that climate change affects herbivores like pikas. 
    more » « less
  2. Small roundworms such as Caenorhabditis elegans release chemical signals called ascarosides in order to communicate with other worms of the same species. Using the ascarosides, the worm can tell its friends, for example, how crowded the neighborhood is and whether there is enough food. The ascarosides thus help the worms in the population decide whether the neighborhood is good – meaning they should hang around, eat, and make babies – or whether the neighborhood is bad. If so, the worms should develop into a larval stage specialized for dispersal that will allow them to find a better neighborhood. Roundworms make the ascarosides by attaching a long chemical ‘side chain’ to an ascarylose sugar. Further chemical modifications allow the worms to produce different signals. In general, to signal a good neighborhood, worms attach a structure called an indole group to the ascarosides. To signal a bad neighborhood, worms make the side chain very short. But how does a worm control which ascarosides it makes? Zhou, Wang et al. now show that C. elegans can change the meaning of its chemical message by modifying the ascarosides that it has already produced instead of making new ones from scratch. Specifically, as their neighborhood runs out of food, C. elegans can use an enzyme called ACS-7 to initiate the shortening of the side chains of indole-ascarosides. The worm can thus change a favorable ascaroside signal that causes the worms to group together into an unfavorable ascaroside signal that causes the worms to enter their dispersal stage. Although Zhou, Wang et al. have focused on chemical communication in C. elegans, the findings could easily apply to the many other species of roundworm that produce ascarosides. Knowing how worms communicate will help us to understand how worms respond to their environment. This knowledge could potentially be used to interfere with the lifecycles and survival of parasitic worm species that harm health and crops. 
    more » « less
  3. Even though neighborhoods are built for people, lots of wild animals also call these places home. You might have seen a squirrel, a fox, or a deer munching on your garden or running down your street. Living near people gives some animals food and places to live, but it can also cause problems for both animals and people. Sometimes people do not agree about what to do about the animals that live near them. We were curious about how people and wild animals live together and decided to investigate. We studied how people make decisions about deer in the suburbs of Massachusetts, where some people think there are too many deer and others are not so sure. We discovered that people often disagree, and politics matters. Paying attention to this disagreement can help people work together and make choices that let wild animals and people to live together with fewer problems. 
    more » « less
  4. Biodiversity assessments are critical for setting conservation priorities, understanding ecosystem function and establishing a baseline to monitor change. Surveys of marine biodiversity that rely almost entirely on sampling adult organisms underestimate diversity because they tend to be limited to habitat types and individuals that can be easily surveyed. Many marine animals have planktonic larvae that can be sampled from the water column at shallow depths. This life stage often is overlooked in surveys but can be used to relatively rapidly document diversity, especially for the many species that are rare or live cryptically as adults. Using DNA barcode data from samples of nemertean worms collected in three biogeographical regions—Northeastern Pacific, the Caribbean Sea and Eastern Tropical Pacific—we found that most species were collected as either benthic adults or planktonic larvae but seldom in both stages. Randomization tests show that this deficit of operational taxonomic units collected as both adults and larvae is extremely unlikely if larvae and adults were drawn from the same pool of species. This effect persists even in well-studied faunas. These results suggest that sampling planktonic larvae offers access to a different subset of species and thus significantly increases estimates of biodiversity compared to sampling adults alone. Spanish abstract is available in the electronic supplementary material. 
    more » « less
  5. Many mammals can digest starch by using an enzyme called amylase, but different species eat different amounts of starchy foods. Amylase is released by the pancreas, and in certain species such as humans, it is also created by the glands that produce saliva, allowing the enzyme to be present in the mouth. There, amylase can start to break down starch, releasing a sweet taste that helps the animal to detect starchy foods. Curiously, humans have multiple copies of the gene that codes for the enzyme, but the exact number varies between people. Previous research has found that populations with more copies also eat more starch; if this correlation also existed in other species, it could help to understand how diets influence and shape genetic information. In addition, it is unclear how amylase came to be present in saliva, as the ancestors of mammals only produced the protein in the pancreas. Pajic et al. analyzed the genomes of a range of mammals and found that the more starch a species had in its diet, the more amylase gene copies it harbored in its genome. In fact, unrelated mammals living in different habitats and eating different types of food have similar numbers of amylase gene copies if they have the same level of starch in their diet. In addition, Pajic et al. discovered that animals such as mice, rats, pigs and dogs, which have lived in close contact with people for thousands of years, quickly adapted to the large amount of starch present in human food. In each of these species, a mechanism called gene duplication independently created new copies of the amylase gene. This could represent the first step towards some of these copies becoming active in the glands that release saliva. In people, having fewer copies of the amylase gene could mean they have a higher risk for diabetes; this number is also tied to the composition of the collection of bacteria that live in the mouth and the gut. Understanding how the copy number of the amylase gene affects biology will help to grasp how it also affects health and wellbeing, in humans and in our four-legged companions. 
    more » « less