Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This field study examined how sediment macroinfauna change patterns of sediment oxygen demand (SOD) throughout a diel oxygen cycle. Sediments with a greater faunal presence would be expected to have greater overall SOD, and at night may alter their behavior and influence SOD depending on their response to low-oxygen stress. Dynamic faunal bioturbation or bioirrigation behavior would also result in corresponding variation in SOD values on short time scales. In situ flow-through benthic metabolism chambers were used to measure SOD at a high temporal resolution in discrete sediment patches. Sediments with more macroinfauna had greater average SOD over the diel cycle, consistent with previous studies. Where more macroinfauna were present, they drove greater SOD during nightly low oxygen, presumably by enhancing their burrowing and irrigation activities. SOD was also more variable on a sub-diel timescale in sediments with more macroinfauna. Sediment oxygen demand is dynamic and highly sensitive both temporally, on very short timescales, and spatially, in terms of resident fauna, and their interaction produces heretofore unaccounted complexity in patterns of SOD particularly in shallow coastal systems. Extrapolations of temporally and spatially limited SOD measurements to a system-wide scale that do not account for the short-term and spatially variable effects of fauna may produce imprecise and misleading estimates of this critical ecosystem function.more » « less
-
Synopsis Meiofauna (benthic invertebrates < 1 mm in size) facilitate sediment biogeochemical cycling, alter sediment microbial community structure, and serve as an important trophic link between benthic micro- and macrofauna, yet the behaviors that mechanistically link individuals to their ecological effects are largely unknown. Meiofauna are small and sediments are opaque, making observing the in situ activities of these animals challenging. We developed the Meioflume, a small, acrylic flow tunnel filled with grains of cryolite, a transparent sand analog, to simulate the in situ conditions experienced by meiofauna in an observable lab environment. The Meioflume has a working area (28.57 mm × 10.16 mm × 1 mm) that is small enough to quickly locate fauna and clearly observe behavior but large enough that animals are not tightly confined. When connected to a syringe press, the Meioflume can produce low velocity flows consistently and evenly across the width of its working area while retaining the contents. To demonstrate its functionality in observing the behavior of meiofauna, we placed individual meiofaunal animals (a protodrilid annelid, a harpacticoid copepod, and a platyhelminth flatworm) in Meioflumes and filmed their behavioral response to a sudden initiation of porewater flow. All animals were clearly visible within the flume and could be observed responding to the onset of flow. The design and construction of the Meioflume make it an accessible, affordable tool for researchers. This experimental system could be modified to address many questions in meiofaunal ecology, such as studying behavior in response to chemical cues, allowing us to observe meiofaunal behaviors to better understand their ecological effects.more » « less
-
Abstract In shallow coastal systems, sediments are exposed to dramatic and complex variability in environmental conditions that influences sediment processes on short timescales. Sediment oxygen demand (SOD), or consumption of oxygen by sediment‐dwelling organisms and chemical reactions within sediments, is one such process and an important metric of aquatic ecosystem functioning and health. The most common instruments used to measure SOD in situ are batch‐style benthic chambers, which generally require long measurement periods to resolve fluxes and thus do not capture the high temporal variability in SOD that can be driven by dynamic coastal processes. These techniques also preclude linking changes in SOD through time to specific features of the sediment, for example, shifts in sediment faunal activities which can vary on short time scales and can also be affected by ambient oxygen concentrations. Here we present an in situ semi‐flow through instrument to repeatedly measure SOD in discrete areas of sediment. The system isolates patches of sediment in replicate benthic chambers, and measures and records oxygen decrease for a short time before refreshing the overlying water in the chamber with water from the external environment. This results in a sawtooth pattern in which each tooth is an incubation, providing an automated method to produce direct measurements of in situ SOD that can be directly linked to an area of sediment and related to rapid shifts in environmental conditions.more » « less
-
Abstract Infaunal organisms mix sediments through burrowing, ingestion and egestion, enhancing fluxes of nutrients and oxygen, yet the mechanisms underlying bioturbation remain unresolved. Burrows are extended through muddy sediments by fracture, and we hypothesize that the cohesive properties of sediments play an important but unexplored role in resisting bioturbation. Specifically, we suggest that crack branching, tortuosity, and microcracking are important in freeing particles from the cohesive matrix, and that the sediment properties that affect these processes are important predictors of bioturbation. We use finite element modeling and simplified, mechanics‐based models to explore the relative importance of sediment mechanical properties and worm behaviors in determining crack propagation paths. Our results show that crack propagation direction depends on variability in fracture toughness, and that applying more force to one side of the burrow wall, simulating “steering” behavior, has surprisingly little effect on crack propagation direction. Burrowers instead steer by choosing among crack branches. Paths created by burrowing worms in natural sediments are mostly straight with some crack branching, consistent with modeling results. Crack branching also requires sufficient stored elastic energy to drive two cracks, and worms can exert larger forces resulting in more stored energy in stiffer sediments. This implies that more crack branching and consequently more particle mixing occurs in heterogeneous sediments with low fracture toughness relative to stiffness. Whether sediments with greater potential for crack branching also experience higher bioturbation remains to be tested, but these results indicate that material properties of sediments may be important in resisting or facilitating bioturbation.more » « less
-
Collecting data in the ocean requires scientists to choose, use, and interpret the output of sensor-based instruments. With the increasing accessibility of do-it-yourself (DIY) technology, researchers are able to develop innovative and cost-effective instruments with relative ease compared to just 10 years ago. As part of a project-based course to teach undergraduates and graduate students engineering skills that are useful in marine science, we developed an Arduino-based instrument to measure temperature and depth. By building, calibrating, and testing this instrument, students learn about sensors and circuits, are introduced to hardware and software design, and collect, analyze, and interpret their own data. More broadly, students learn principles of instrument design and develop problem-solving skills.more » « less
-
Animals with long, skinny bodies are often called “worms,” but there are many kinds of worms—even in the ocean. Annelids (segmented worms) include garden earthworms, but their ocean relatives come in many colors, shapes, and sizes. Some are so small that they live between grains of sand, while others can be longer than a human and eat fish! Marine worms are essential to the ocean food web, as both predators and prey. They help create homes for plants and animals by burrowing and building tubes in ocean sediments. Scientists are still discovering new worm species, and there are still many mysteries about how worms eat, why they live in the places they do, and what roles they play in ocean ecosystems. Worms are a fascinating and important part of ocean communities.more » « less
-
Changes in dissolved oxygen concentration can cause dramatic shifts in chemical, biological, and ecological processes in aquatic systems. In shallow coastal areas, this can happen on short timescales, with oxygen increasing during the day due to photosynthesis and declining at night due to respiration. We present a system controlled by an Arduino microprocessor that leverages the oxygen-consuming capacity of sediments to manipulate dissolved oxygen in an aquarium tank to planned concentrations. With minor adjustments to the Arduino code, the system can produce a variety of dissolved oxygen patterns, including a diel cycle. Designed to be user-friendly and scalable if needed, the system uses easily acquired, low-cost electronic and aquarium components. Its simplicity and accessibility permit deeper exploration of the effects of dissolved oxygen variability in aquatic systems, and the use of Arduino code and basic electronics makes it a potential tool for teaching experimental design and instrument fabrication.more » « less
An official website of the United States government
