This content will become publicly available on December 1, 2024
- Award ID(s):
- 1841754
- NSF-PAR ID:
- 10415281
- Date Published:
- Journal Name:
- npj Climate and Atmospheric Science
- Volume:
- 6
- Issue:
- 1
- ISSN:
- 2397-3722
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Climate change projections consistently demonstrate that warming temperatures and dwindling seasonal snowpack will elicit cascading effects on ecosystem function and water resource availability. Despite this consensus, little is known about potential changes in the variability of ecohydrological conditions, which is also required to inform climate change adaptation and mitigation strategies. Considering potential changes in ecohydrological variability is critical to evaluating the emergence of trends, assessing the likelihood of extreme events such as floods and droughts, and identifying when tipping points may be reached that fundamentally alter ecohydrological function. Using a single-model Large Ensemble with sophisticated terrestrial ecosystem representation, we characterize projected changes in the mean state and variability of ecohydrological processes in historically snow-dominated regions of the Northern Hemisphere. Widespread snowpack reductions, earlier snowmelt timing, longer growing seasons, drier soils, and increased fire risk are projected for this century under a high-emissions scenario. In addition to these changes in the mean state, increased variability in winter snowmelt will increase growing-season water deficits and increase the stochasticity of runoff. Thus, with warming, declining snowpack loses its dependable buffering capacity so that runoff quantity and timing more closely reflect the episodic characteristics of precipitation. This results in a declining predictability of annual runoff from maximum snow water equivalent, which has critical implications for ecosystem stress and water resource management. Our results suggest that there is a strong likelihood of pervasive alterations to ecohydrological function that may be expected with climate change.more » « less
-
Abstract Recent work using CMIP5 models under RCP8.5 suggests that individual multimodel mean changes in precipitation and wind variability associated with the Madden‐Julian oscillation (MJO) are not detectable until the end of the 21st century. However, a decrease in the ratio of MJO circulation to precipitation anomaly amplitude is detectable as early as 2021–2040, consistent with an increase in dry static stability as predicted by weak temperature gradient balance. Here, we examine MJO activity in multiple reanalyses (ERA5, MERRA‐2, and ERA‐20C) and find that MJO wind and precipitation anomaly amplitudes have a complicated time evolution over the record. However, a decrease in the ratio of MJO circulation to precipitation anomaly amplitude is detected over the observational period, consistent with the change in dry static stability. These results suggest that weak temperature gradient theory may be able to help explain changes in MJO activity in recent decades.
-
Two high-resolution (4 km) regional climate simulations over a 10-yr period are conducted to study the changes in wintertime precipitation distribution across mountain ranges in the interior western United States (IWUS) in a warming climate. One simulation represents the current climate, and another represents an ~2050 climate using a pseudo–global warming approach. The climate perturbations are derived from the ensemble mean of 15 global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). These simulations provide an estimate of average changes in wintertime orographic precipitation enhancement and finescale distribution across mountain ranges. The variability in these changes among CMIP5 models is quantified using statistical downscaling relations between orographic precipitation distribution and upstream conditions, developed in Part I. The CMIP5 guidance indicates a robust warming signal (~2 K) over the IWUS by ~2050 but minor changes in relative humidity and cloud-base height. The IWUS simulations reveal a widespread increase in precipitation on account of higher precipitation rates during winter storms in this warmer climate. This precipitation increase is most significant over the mountains rather than on the surrounding plains. The increase in precipitation rate is largely due to an increase in low-level cross-mountain moisture transport. The application of the statistical relations indicates that individual CMIP5 models disagree about the magnitude and distribution of orographic precipitation change in the IWUS, although most agree with the ensemble-mean-predicted orographic precipitation increase.
-
Changes to the Madden‐Julian Oscillation in Coupled and Uncoupled Aquaplanet Simulations With 4xCO 2
Abstract The impacts of rising carbon dioxide (CO2) concentration and ocean feedbacks on the Madden‐Julian Oscillation (MJO) are investigated with the Community Atmospheric Model Version 5 (CAM5) in an idealized aquaplanet configuration. The climate response associated with quadrupled CO2concentrations and sea surface temperature (SST) warming are examined in both the uncoupled CAM5 and a version coupled to a slab ocean model. Increasing CO2concentrations while holding SST fixed produces only small impacts to MJO characteristics, while the SST change resulting from increased CO2concentrations produces a significant increase in MJO precipitation anomaly amplitude but smaller increase in MJO circulation anomaly amplitude, consistent with previous studies. MJO propagation speed increases in both coupled simulations with quadrupling of CO2and uncoupled simulations with the same climatological surface temperature warming imposed, although propagation speed is increased more with coupling. While climatological SST changes are identical between coupled and uncoupled runs, other aspects of the basic state such as zonal winds do not change identically. For example, climate warming produces stronger superrotation and weaker mean lower tropospheric easterlies in the coupled run, which contributes to greater increases in MJO eastward propagation speed with warming through its effect on moisture advection. The column process, representing the sum of vertical moist static energy (MSE) advection and radiative heating anomalies, also supports faster eastward propagation with warming in the coupled run. How differing basic states between coupled and uncoupled runs contribute to this behavior is discussed in more detail.
-
Mechanisms that cause changes in Madden–Julian oscillation (MJO) precipitation amplitude under global warming are examined in models from phase 5 of the Coupled Model Intercomparison Project. Under global warming in representative concentration pathway 8.5, MJO precipitation intensifies in most models relative to current climate while MJO wind circulations increase at a slower rate or weaken. Changes in MJO precipitation intensity are partially controlled by changes in moisture profiles and static stability. The vertical moisture gradient increases in the lower half of the troposphere in response to the surface warming, while the vertical static stability gradient increases due to preferential warming in the upper troposphere. A nondimensional quantity called α has been defined that gives the efficiency of vertical advective moistening associated with diabatic processes in the free troposphere, and has been hypothesized by previous studies to regulate MJO amplitude. The term α is proportional to the vertical moisture gradient and inversely proportional to static stability. Under global warming, the increased vertical moisture gradient makes α larger in models, despite increased static stability. Although α increases in all models, MJO precipitation amplitude decreases in some models, contrary to expectations. It is demonstrated that in these models more top-heavy MJO diabatic heating with warming overwhelms the effect of increased α to make vertical moisture advection less efficient.more » « less