skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mechanisms for Global Warming Impacts on Madden–Julian Oscillation Precipitation Amplitude
Mechanisms that cause changes in Madden–Julian oscillation (MJO) precipitation amplitude under global warming are examined in models from phase 5 of the Coupled Model Intercomparison Project. Under global warming in representative concentration pathway 8.5, MJO precipitation intensifies in most models relative to current climate while MJO wind circulations increase at a slower rate or weaken. Changes in MJO precipitation intensity are partially controlled by changes in moisture profiles and static stability. The vertical moisture gradient increases in the lower half of the troposphere in response to the surface warming, while the vertical static stability gradient increases due to preferential warming in the upper troposphere. A nondimensional quantity called α has been defined that gives the efficiency of vertical advective moistening associated with diabatic processes in the free troposphere, and has been hypothesized by previous studies to regulate MJO amplitude. The term α is proportional to the vertical moisture gradient and inversely proportional to static stability. Under global warming, the increased vertical moisture gradient makes α larger in models, despite increased static stability. Although α increases in all models, MJO precipitation amplitude decreases in some models, contrary to expectations. It is demonstrated that in these models more top-heavy MJO diabatic heating with warming overwhelms the effect of increased α to make vertical moisture advection less efficient.  more » « less
Award ID(s):
1841754
PAR ID:
10154951
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Climate
Volume:
32
Issue:
20
ISSN:
0894-8755
Page Range / eLocation ID:
6961 to 6975
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Madden Julian Oscillation (MJO) consists of a tropical convective region that propagates eastward through the Indo‐Pacific warm pool. Decadal climate variability alters sea surface temperature patterns, affecting the MJO's basic state. This investigation examines the impact of projected SST and moisture pattern changes over the 21st Century on MJO precipitation and zonal wind amplitude changes in 80 members of the Community Earth System Model 2 Large Ensemble in the SSP370 radiative forcing scenario, each with its unique representation of decadal variability. Ensemble members with strongest MJO precipitation change in a given 20‐year period have a more El Niño‐like east Pacific warming pattern. MJO amplitude increases for east Pacific warming because of a strengthened meridional moisture gradient that supports MJO eastward propagation. A stronger vertical moisture gradient also exists for ensemble members with preferential east Pacific warming, which supports a stronger MJO under moisture mode theory. 
    more » « less
  2. Abstract The impacts of rising carbon dioxide (CO2) concentration and ocean feedbacks on the Madden‐Julian Oscillation (MJO) are investigated with the Community Atmospheric Model Version 5 (CAM5) in an idealized aquaplanet configuration. The climate response associated with quadrupled CO2concentrations and sea surface temperature (SST) warming are examined in both the uncoupled CAM5 and a version coupled to a slab ocean model. Increasing CO2concentrations while holding SST fixed produces only small impacts to MJO characteristics, while the SST change resulting from increased CO2concentrations produces a significant increase in MJO precipitation anomaly amplitude but smaller increase in MJO circulation anomaly amplitude, consistent with previous studies. MJO propagation speed increases in both coupled simulations with quadrupling of CO2and uncoupled simulations with the same climatological surface temperature warming imposed, although propagation speed is increased more with coupling. While climatological SST changes are identical between coupled and uncoupled runs, other aspects of the basic state such as zonal winds do not change identically. For example, climate warming produces stronger superrotation and weaker mean lower tropospheric easterlies in the coupled run, which contributes to greater increases in MJO eastward propagation speed with warming through its effect on moisture advection. The column process, representing the sum of vertical moist static energy (MSE) advection and radiative heating anomalies, also supports faster eastward propagation with warming in the coupled run. How differing basic states between coupled and uncoupled runs contribute to this behavior is discussed in more detail. 
    more » « less
  3. Abstract Recent work using CMIP5 models under RCP8.5 suggests that individual multimodel mean changes in precipitation and wind variability associated with the Madden‐Julian oscillation (MJO) are not detectable until the end of the 21st century. However, a decrease in the ratio of MJO circulation to precipitation anomaly amplitude is detectable as early as 2021–2040, consistent with an increase in dry static stability as predicted by weak temperature gradient balance. Here, we examine MJO activity in multiple reanalyses (ERA5, MERRA‐2, and ERA‐20C) and find that MJO wind and precipitation anomaly amplitudes have a complicated time evolution over the record. However, a decrease in the ratio of MJO circulation to precipitation anomaly amplitude is detected over the observational period, consistent with the change in dry static stability. These results suggest that weak temperature gradient theory may be able to help explain changes in MJO activity in recent decades. 
    more » « less
  4. Abstract The Madden-Julian oscillation (MJO) has profound impacts on weather and climate phenomena, and thus changes in its activity have important implications under human-induced global climate change. Here, the time at which the MJO change signal emerges from natural variability under anthropogenic warming is investigated. Using simulations of the Community Earth System Model version 2 large ensemble forced by the shared socioeconomic pathways SSP370 scenario, an increase in ensemble mean MJO precipitation amplitude and a smaller increase in MJO circulation amplitude occur by the end of the 21 st century, consistent with previous studies. Notably, the MJO precipitation amplitude change signal generally emerges more than a decade earlier than that of MJO wind amplitude. MJO amplitude changes also emerge earlier over the eastern Pacific than other parts of the tropics. Our findings provide valuable information on the potential changes of MJO variability with the aim of improving predictions of the MJO and its associated extreme events. 
    more » « less
  5. Abstract Tropical areas with mean upward motion—and as such the zonal-mean intertropical convergence zone (ITCZ)—are projected to contract under global warming. To understand this process, a simple model based on dry static energy and moisture equations is introduced for zonally symmetric overturning driven by sea surface temperature (SST). Processes governing ascent area fraction and zonal mean precipitation are examined for insight into Atmospheric Model Intercomparison Project (AMIP) simulations. Bulk parameters governing radiative feedbacks and moist static energy transport in the simple model are estimated from the AMIP ensemble. Uniform warming in the simple model produces ascent area contraction and precipitation intensification—similar to observations and climate models. Contributing effects include stronger water vapor radiative feedbacks, weaker cloud-radiative feedbacks, stronger convection-circulation feedbacks, and greater poleward moisture export. The simple model identifies parameters consequential for the inter-AMIP-model spread; an ensemble generated by perturbing parameters governing shortwave water vapor feedbacks and gross moist stability changes under warming tracks inter-AMIP-model variations with a correlation coefficient ∼0.46. The simple model also predicts the multimodel mean changes in tropical ascent area and precipitation with reasonable accuracy. Furthermore, the simple model reproduces relationships among ascent area precipitation, ascent strength, and ascent area fraction observed in AMIP models. A substantial portion of the inter-AMIP-model spread is traced to the spread in how moist static energy and vertical velocity profiles change under warming, which in turn impact the gross moist stability in deep convective regions—highlighting the need for observational constraints on these quantities. Significance Statement A large rainband straddles Earth’s tropics. Most, but not all, climate models predict that this rainband will shrink under global warming; a few models predict an expansion of the rainband. To mitigate some of this uncertainty among climate models, we build a simpler model that only contains the essential physics of rainband narrowing. We find several interconnected processes that are important. For climate models, the most important process is the efficiency with which clouds move heat and humidity out of rainy regions. This efficiency varies among climate models and appears to be a primary reason for why climate models do not agree on the rate of rainband narrowing. 
    more » « less