skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Importance of STEM Sense of Belonging and Academic Hope in Enhancing Persistence for Low-Income, Underrepresented STEM Students
Abstract The purpose of this longitudinal investigation was to examine the effectiveness of a comprehensive, integrated curricular and co-curricular program designed to build community, provide academic and social support, and promote engagement in academically purposeful activities resulting in more equitable environments for historically underrepresented, low-income science, technology, engineering, and mathematics (STEM) information technology (IT) students. The study also focused on the role that the sense of belonging and academic hope play in enhancing persistence to degree completion. Program participants had significantly higher persistence rates compared to a matched comparison group. Additionally, STEM-specific belonging and academic hope significantly predicted students’ intentions to persist to degree completion in IT. A major finding was that STEM domain–specific belonging was a stronger predictor of persistence than general belonging. Our investigation has implications for the role that cohort-based programs, industry engagement, peer mentoring, proactive advising, undergraduate research opportunities, career preparation, and leveraging need-based financial aid play in ensuring equity in STEM.  more » « less
Award ID(s):
1643586
PAR ID:
10415387
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal for STEM Education Research
Volume:
7
Issue:
2
ISSN:
2520-8705
Format(s):
Medium: X Size: p. 155-180
Size(s):
p. 155-180
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The overall goal of the NSF Division of Undergraduate Education (DUE) S-STEM funded "Attracting and Cultivating Cybersecurity Experts and Scholars through Scholarships" (ACCESS) program is to increase Cybersecurity-related STEM degree completion of low-income, high-achieving undergraduate students with demonstrated financial need and to generate knowledge about academic success, retention, persistence, graduation, and career pathways of these students to improve the education of future STEM workers. Specifically, ACCESS aims to contribute towards addressing the tremendous governmental and industry need for highly skilled cybersecurity experts. Program objectives include: (1) increasing annual enrollment of students in the B.S. in Computer and Information Sciences programs with specialization in Cybersecurity; (2) enhancing curricular and extra-curricular student support services and activities for students; (3) strengthening the partnerships with computer and information technology employers; and (4) investigating the impact of the curricular and co-curricular activities on student success. While significant research has been done relative to student success, retention, and persistence to graduation in STEM fields, cybersecurity is a new field of study and factors affecting student recruitment, academic success, retention, persistence to graduation within this field are not known. In year 1, students were recruited, applications were evaluated, and scholarships were awarded to nine academically talented students, beginning fall 2020. Of these students, four are female (one is from an underrepresented minority population) and five are male (three are from underrepresented minority populations). The students engage in a set of co-curriculum activities, including participation in: outreach activities; technical and career development seminars; a cybersecurity-focused student organization; and potentially, cybersecurity undergraduate research and summer internship opportunities. The paper and poster describe the background of the ACCESS program, recruitment and selection of ACCESS scholarship recipients, project activities, and challenges presented by the COVID-19 pandemic. 
    more » « less
  2. Leveraging Innovation and Optimizing Nurturing in STEM (NSF S-STEM #2130022, known locally as LION STEM Scholars) is a program developed to serve low-income undergraduate Engineering students at Penn State Berks, a regional campus of the Pennsylvania State University. As part of the program, scholars participate in a four-year comprehensive multi- tiered mentoring program and cohort experience. The LION STEM curricular program includes Engineering Ahead (a 4-week summer residential math-intensive bridge program prior to entering college), a first semester First-Year Seminar, and a second semester STEM-Persistence Seminar. Co-curricular activities focus on professional communication skills, financial literacy, career readiness, undergraduate research, and community engagement. The program seeks to accomplish four goals: (1) adapt, implement, and analyze evidence-based curricular and co- curricular activities to support, retain, and graduate a diverse set of the project's engineering scholars, (2) implement, test, and study through research and project evaluation strategies for systematically supporting student academic and career pathways in STEM, including development of STEM identity, (3) contribute to the knowledge base through investigation of the project's four-year multi-modal program so that other colleges may successfully implement similar programs, and (4) disseminate outcomes and findings related to the supports and interventions that promote student success to other institutions working to support low-income STEM students. The purpose of this paper is to analyze data from a repeated-measures design to provide a holistic narrative about the effects that the academic and support activities offered to LION STEM Scholars have on the development of their future-engineer role identity throughout their first year as an undergraduate engineering student. This paper presents data collected from semi- structured (Smith & Osborn, 2007) audio-recorded interviews from the first cohort of LION STEM Scholars (n=7) at three different time points (pre-summer bridge, post-summer bridge, end of first semester) as well as data collected from a written survey at the end of scholars’ second semester. 
    more » « less
  3. Guided by the notion of academic momentum, this study drew data from longitudinal transcript records at a large public 4-year research university and examined factors that specifically contribute to community college transfer students’ academic momentum. It also explored how early academic momentum along with students’ sociodemographic characteristics impact degree attainment in science, technology, engineering, and mathematics (STEM) fields of study. This study conducted multinomial logistic regression analysis and found that certain students’ background characteristics (i.e., gender, age, and family income), community college academic achievement (i.e., associate degree completion, and number of community college credits accepted), and early academic performance at the 4-year university (math and English preparedness, number of credit hours attempted, and first-semester grade point average) were significantly related to transfer students’ likelihood of obtaining a STEM degree. The findings provide new knowledge about academic momentum and could be used to enhance the community college pathway to STEM degree completion. 
    more » « less
  4. S-STEM scholarships are provided to academically talented low-income engineering students with the intent of increasing retention as well as successful transfer and subsequent graduation rates for a bachelor's degree in an Engineering or Computer Science (ECS) field. Since the spring of 2020, 71 unique students have been awarded scholarships. At this time, there are 22 active scholars, 34 have already successfully transferred to complete their ECS degree and a quarter of those scholars have since graduated. Beyond the financial support, NSF S-STEM programs center on providing academic, social and professional development. In addition, the research component of this program at a midwestern HSI community college is exploring the following questions: Do students recognize themselves as engineers prior to transfer? Do students feel a sense of belonging in their Engineering and Computer Science programs? Does being an NSF S-STEM Scholar impact either of these outcomes? The importance of developing a strong engineering identity as an indicator of persistence to degree completion has been the focus of considerable research over the last fifteen years. However, there is limited understanding of how community college experiences influence engineering identity development. Since the spring of 2020, students have been completing surveys during the first six weeks of the fall semester and during the last four weeks of the spring semester. Engineering identity was explored with questions centered on interest, recognition and competence as well as self-efficacy in skills such as tinkering, design and experimentation. Sense of belonging indicators were examined in terms of inclusion, sense of belonging to the community and sense of belonging to their major. This paper will provide quantitative analysis of the data examining outcomes based on demographics including ethnicity, gender, scholar status and length of time in the program. 
    more » « less
  5. This research paper describes the experiences of freshman STEM students arriving on a college campus for the first time after nearly a year and a half of online learning in high school. Fall 2021 marked the return of in-person learning in higher education, grown from a belief in and commitment to the value of interactions only achieved in such context (Sabella, 2021). First-year programs across the country welcomed first-time-in-college (FTIC) freshmen, many of whom experienced lower levels of social, emotional, and academic well-being due to extended periods of online learning in their final years of high school (Duckworth, et al., 2021). This reality, for some students, represented an unfamiliar learning environment to be negotiated in understanding their multiplying and evolving spaces as learners (e.g., Sequeira & Dacey, 2020). This qualitative study sought to understand the aspects and ways in which FTIC freshmen in a STEM student success program experienced a face-to-face first semester of college following an extended period of online learning, and how these experiences shaped a sense of belonging toward identity development, both as a college student in general and as a STEM major in particular. To explore these ideas, longitudinal qualitative data were collected through a series of focus groups in the fall of 2021. Participating students had substantial identified financial need and received scholarship support as part of the program. They also had the opportunity to participate as a cohort in intentionally designed curricular and co-curricular activities aimed at supporting their academic journey toward successful completion of a STEM degree. Findings suggest that physical space (e.g., the library and other specific locations on campus) played a disproportionate role in creating a sense of belonging for students. The results of this project add important nuance to the sense of belonging and identity development literature by expanding our understanding of the ways place, context, and prior experiences may uniquely intersect to ultimately influence belonging and identity in college. Keywords: STEM Identity, COVID, First-Year Experience, Sense of Belonging 
    more » « less