skip to main content


Title: A latent class analysis approach to the identification of doctoral students at risk of attrition
To advance understanding of doctoral student experiences and the high attrition rates among Science, Technology, Engineering, and Mathematics (STEM) doctoral students, we developed and examined the psychological profiles of different types of doctoral students. We used latent class analysis on self-reported psychological data relevant to psychological threat from 1,081 incoming doctoral students across three universities and found that the best-fitting model delineated four threat classes: Lowest Threat , Nonchalant , Engaged/Worried , and Highest Threat . These classes were associated with characteristics measured at the beginning of students’ first semester of graduate school that may influence attrition risk, including differences in academic preparation (e.g., amount of research experience), self-evaluations and perceived fit (e.g., sense of belonging), attitudes towards graduate school and academia (e.g., strength of motivation), and interpersonal relations (e.g., perceived social support). Lowest Threat students tended to report the most positive characteristics and Highest Threat students the most negative characteristics, whereas the results for Nonchalant and Engaged/Worried students were more mixed. Ultimately, we suggest that Engaged/Worried and Highest Threat students are at relatively high risk of attrition. Moreover, the demographic distributions of profiles differed, with members of groups more likely to face social identity threat (e.g., women) being overrepresented in a higher threat profile (i.e., Engaged/Worried students) and underrepresented in lower threat profiles (i.e., Lowest Threat and Nonchalant students). We conclude that doctoral students meaningfully vary in their psychological threat at the beginning of graduate study and suggest that these differences may portend divergent outcomes.  more » « less
Award ID(s):
1661214
NSF-PAR ID:
10415439
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Benetreau, Yann
Date Published:
Journal Name:
PLOS ONE
Volume:
18
Issue:
1
ISSN:
1932-6203
Page Range / eLocation ID:
e0280325
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this Great Ideas for Teaching Students (GIFTS) paper, we offer learning outcomes that we are beginning to recognize from our eight-week research experience for undergraduates (REU). There are four characteristics that have been found to be essential to success in Science, Technology, Engineering, and Mathematics (STEM) fields: a strong sense of STEM identity, scientific self-efficacy, a sense of belonging, and a psychological sense of community. This is especially true for first-year and transfer students pursuing STEM undergraduate degrees. A variety of studies have been published that go into detail about why these characteristics in particular have such a significant effect on student performance and retention. This paper will present Critical Self-Reflection as a practical way to integrate development of these characteristics into student research experiences to foster experiential learning that goes beyond increasing technical skills. STEM students are not often trained to critically self-reflect on their experiences in classroom and research settings. An inability for undergraduates to reflect intentionally on their experiences creates greater risk for attrition from STEM disciplines. Curated reflective experiences in collaborative learning settings can offer professional development opportunities to enhance students’ social and technical communication skills. There are four phases within the scaffolded Critical Self-Reflection framework: Learning to Reflect, Reflection for Action, Reflection in Action, and Reflection on Action. When applying the evidence-based practice, STEM undergraduate researchers describe their perceptions via three activities: creating a legacy statement, participating in facilitated dialogue sessions, and writing curated reflection journal entries within an REU. Through critical self-reflection exercises, we are beginning to find growth of first-year and transfer STEM undergraduates in the following areas: understanding of their role in the lab; confidence in their researcher identity; expression of agency; observation and communication skills; and intentionality for action. Participating in this self-reflection allows students to make meaning of their experience enabling them to hone the aforementioned characteristics that creates a pathway from their undergraduate experience to undergraduate degree completion, graduate degree attainment, and to the STEM workforce. 
    more » « less
  2. Aim/Purpose: The research reported here aims to demonstrate a method by which novel applications of qualitative data in quantitative research can resolve ceiling effect tensions for educational and psychological research.Background: Self-report surveys and scales are essential to graduate education and social science research. Ceiling effects reflect the clustering of responses at the highest response categories resulting in non-linearity, a lack of variability which inhibits and distorts statistical analyses. Ceiling effects in stress reported by students can negatively impact the accuracy and utility of the resulting data.Methodology: A longitudinal sample example from graduate engineering students’ stress, open-ended critical events, and their early departure from doctoral study considerations demonstrate the utility and improved accuracy of adjusted stress measures to include open-ended critical event responses. Descriptive statistics are used to describe the ceiling effects in stress data and adjusted stress data. The longitudinal stress ratings were used to predict departure considerations in multilevel modeling ANCOVA analyses and demonstrate improved model predictiveness.Contribution: Combining qualitative data from open-ended responses with quantitative survey responses provides an opportunity to reduce ceiling effects and improve model performance in predicting graduate student persistence. Here, we present a method for adjusting stress scale responses by incorporating coded critical events based on the Taxonomy of Life Events, the application of this method in the analysis of stress responses in a longitudinal data set, and potential applications.Findings: The resulting process more effectively represents the doctoral student experience within statistical analyses. Stress and major life events significantly impact engineering doctoral students’ departure considerations.Recommendations for Practitioners: Graduate educators should be aware of students’ life events and assist students in managing graduate school expectations while maintaining progress toward their degree. Recommendation for Researchers: Integrating coded open-ended qualitative data into statistical models can increase the accuracy and representation of the lived student experience. The new approach improves the accuracy and presentation of students’ lived experiences by incorporating qualitative data into longitudinal analyses. The improvement assists researchers in correcting data with ceiling effects for use in longitudinal analyses.Impact on Society: The method described here provides a framework to systematically include open-ended qualitative data in which ceiling effects are present.Future Research: Future research should validate the coding process in similar samples and in samples of doctoral students in different fields and master’s students. 
    more » « less
  3. This Research Full Paper presents two examples of doctoral engineering attrition. To date, little research has been conducted on the many compounding factors that lead to attrition in graduate programs. In this paper, we present the narratives of two doctoral PhD students, Kelsey and Amy, who were deciding on departing from the engineering PhD. These narratives embody a deeper investigation of academic self-concept development through graduate school, with a focus on the decision-making processes to continue in the PhD program or decide to depart with a Master’s degree. At the time of the interviews, both participants were still enrolled in their programs, but one had definite plans to depart and left shortly after the interview. This study is one of the first that highlights the role of the Master's degree as an off-ramp from the engineering doctorate and lends insight to narratives surrounding attrition in engineering: Despite academic success in their courses and successful research progress, these participants decided to depart even after passing significant milestones such as qualifying exams. This research presents the beginning of a larger research project with a goal of generating a more complete narrative of the attrition process for the students, with an explicit focus on Master's-level departure. 
    more » « less
  4. Introduction and Theoretical Frameworks Our study draws upon several theoretical foundations to investigate and explain the educational experiences of Black students majoring in ME, CpE, and EE: intersectionality, critical race theory, and community cultural wealth theory. Intersectionality explains how gender operates together with race, not independently, to produce multiple, overlapping forms of discrimination and social inequality (Crenshaw, 1989; Collins, 2013). Critical race theory recognizes the unique experiences of marginalized groups and strives to identify the micro- and macro-institutional sources of discrimination and prejudice (Delgado & Stefancic, 2001). Community cultural wealth integrates an asset-based perspective to our analysis of engineering education to assist in the identification of factors that contribute to the success of engineering students (Yosso, 2005). These three theoretical frameworks are buttressed by our use of Racial Identity Theory, which expands understanding about the significance and meaning associated with students’ sense of group membership. Sellers and colleagues (1997) introduced the Multidimensional Model of Racial Identity (MMRI), in which they indicated that racial identity refers to the “significance and meaning that African Americans place on race in defining themselves” (p. 19). The development of this model was based on the reality that individuals vary greatly in the extent to which they attach meaning to being a member of the Black racial group. Sellers et al. (1997) posited that there are four components of racial identity: 1. Racial salience: “the extent to which one’s race is a relevant part of one’s self-concept at a particular moment or in a particular situation” (p. 24). 2. Racial centrality: “the extent to which a person normatively defines himself or herself with regard to race” (p. 25). 3. Racial regard: “a person’s affective or evaluative judgment of his or her race in terms of positive-negative valence” (p. 26). This element consists of public regard and private regard. 4. Racial ideology: “composed of the individual’s beliefs, opinions and attitudes with respect to the way he or she feels that the members of the race should act” (p. 27). The resulting 56-item inventory, the Multidimensional Inventory of Black Identity (MIBI), provides a robust measure of Black identity that can be used across multiple contexts. Research Questions Our 3-year, mixed-method study of Black students in computer (CpE), electrical (EE) and mechanical engineering (ME) aims to identify institutional policies and practices that contribute to the retention and attrition of Black students in electrical, computer, and mechanical engineering. Our four study institutions include historically Black institutions as well as predominantly white institutions, all of which are in the top 15 nationally in the number of Black engineering graduates. We are using a transformative mixed-methods design to answer the following overarching research questions: 1. Why do Black men and women choose and persist in, or leave, EE, CpE, and ME? 2. What are the academic trajectories of Black men and women in EE, CpE, and ME? 3. In what way do these pathways vary by gender or institution? 4. What institutional policies and practices promote greater retention of Black engineering students? Methods This study of Black students in CpE, EE, and ME reports initial results from in-depth interviews at one HBCU and one PWI. We asked students about a variety of topics, including their sense of belonging on campus and in the major, experiences with discrimination, the impact of race on their experiences, and experiences with microaggressions. For this paper, we draw on two methodological approaches that allowed us to move beyond a traditional, linear approach to in-depth interviews, allowing for more diverse experiences and narratives to emerge. First, we used an identity circle to gain a better understanding of the relative importance to the participants of racial identity, as compared to other identities. The identity circle is a series of three concentric circles, surrounding an “inner core” representing one’s “core self.” Participants were asked to place various identities from a provided list that included demographic, family-related, and school-related identities on the identity circle to reflect the relative importance of the different identities to participants’ current engineering education experiences. Second, participants were asked to complete an 8-item survey which measured the “centrality” of racial identity as defined by Sellers et al. (1997). Following Enders’ (2018) reflection on the MMRI and Nigrescence Theory, we chose to use the measure of racial centrality as it is generally more stable across situations and best “describes the place race holds in the hierarchy of identities an individual possesses and answers the question ‘How important is race to me in my life?’” (p. 518). Participants completed the MIBI items at the end of the interview to allow us to learn more about the participants’ identification with their racial group, to avoid biasing their responses to the Identity Circle, and to avoid potentially creating a stereotype threat at the beginning of the interview. This paper focuses on the results of the MIBI survey and the identity circles to investigate whether these measures were correlated. Recognizing that Blackness (race) is not monolithic, we were interested in knowing the extent to which the participants considered their Black identity as central to their engineering education experiences. Combined with discussion about the identity circles, this approach allowed us to learn more about how other elements of identity may shape the participants’ educational experiences and outcomes and revealed possible differences in how participants may enact various points of their identity. Findings For this paper, we focus on the results for five HBCU students and 27 PWI students who completed the MIBI and identity circle. The overall MIBI average for HBCU students was 43 (out of a possible 56) and the overall MIBI scores ranged from 36-51; the overall MIBI average for the PWI students was 40; the overall MIBI scores for the PWI students ranged from 24-51. Twenty-one students placed race in the inner circle, indicating that race was central to their identity. Five placed race on the second, middle circle; three placed race on the third, outer circle. Three students did not place race on their identity circle. For our cross-case qualitative analysis, we will choose cases across the two institutions that represent low, medium and high MIBI scores and different ranges of centrality of race to identity, as expressed in the identity circles. Our final analysis will include descriptive quotes from these in-depth interviews to further elucidate the significance of race to the participants’ identities and engineering education experiences. The results will provide context for our larger study of a total of 60 Black students in engineering at our four study institutions. Theoretically, our study represents a new application of Racial Identity Theory and will provide a unique opportunity to apply the theories of intersectionality, critical race theory, and community cultural wealth theory. Methodologically, our findings provide insights into the utility of combining our two qualitative research tools, the MIBI centrality scale and the identity circle, to better understand the influence of race on the education experiences of Black students in engineering. 
    more » « less
  5. Available attrition statistics for graduate engineering students do not adequately inform current attrition research because they focus on degree completion rather than attrition or early departure; aggregate science, technology, engineering, and mathematics (STEM) students; and reflect out-of-date data. While recently some work has begun to explore doctoral attrition qualitatively, the purpose of this study is to describe current trends in graduate engineering students’ consideration of departure from their programs of study by capturing current numerical data specific to engineering about students’ recent attrition considerations. This is important because, since the last studies were conducted, higher education systems have experienced a global pandemic, economic downturn, and sociopolitical turmoil in the United States. Graduate students (n = 2204) in the U.S. completed a survey. The sample includes master’s (n = 535) and doctorate (n = 1646) degree-seeking students from 27 engineering disciplines and includes U.S. domestic and international populations. A majority of students considered leaving their degree program in the month before they took the survey: nearly 70% of Ph.D. and 39% of master’s students, while 31% of Ph.D. and 16% of master’s students seriously considered leaving their program without their degree. Descriptive statistics provide early departure considerations by engineering discipline, gender identity, race/ethnicity, nationality, and year in program by degree sought. Comparisons between groups are presented for gender, nationality, and career stage. It is essential to have an updated and discipline-specific benchmark of attrition considerations for continued engineering education research purposes, for mentorship, and for administrative purposes. Early departure from graduate school remains a threat to innovation and broadening participation in engineering and the professoriate. 
    more » « less